Volume 74, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


is the primary malaria vector in Latin America, and is especially important in Amazonian Brazil. Historically, control efforts have been focused on indoor house spraying using a variety of insecticides, but since the mid-1990s there has been a shift to patient treatment and focal insecticide fogging. was believed to have been significantly reduced in a gold-mining community, Peixoto de Azevedo (in Mato Grosso State), in the early 1990s by insecticide use during a severe malaria epidemic. In contrast, although was eradicated from some districts of the city of Belem (the capital of Para State) in 1968 to reduce malaria, populations around the water protection area in the eastern district were treated only briefly. To investigate the population structure of including evidence for a population bottleneck in Peixoto, we analyzed eight microsatellite loci of 256 individuals from seven locations in Brazil: three in Amapa State, three in Para State, and one in Mato Grosso State. Allelic diversity and mean expected heterozygosity were high for all populations (mean number alleles/locus and were 13.5 and 0.834, respectively) and did not differ significantly between locations. Significant heterozygote deficits were associated with linkage disequilibrium, most likely due to either the Wahlund effect or selection. We found no evidence for a population bottleneck in Peixoto, possibly because the reduction was not extreme enough to be detected. Overall estimates of long-term varied from 92.4 individuals under the linkage disequilibrium model to ∞ under the heterozygote excess model. Fixation indices and analysis of molecular variance demonstrated significant differentiation between locations north and south of the Amazon River, suggesting a degree of genetic isolation between them, attributed to isolation by distance.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Lourenço-de-Oliveira R, Guimarães AE, Arle M, da Silva TF, Castro MG, Motta MA, Deane LM, 1989. Anopheline species, some of their habits and relation to malaria in endemic areas of Rondonia State, Amazon region of Brazil. Mem Inst Oswaldo Cruz 84 : 501–514. [Google Scholar]
  2. Charlwood JD, 1996. Biological variation in Anopheles darlingi Root. Mem Inst Oswaldo Cruz 91 : 391–398. [Google Scholar]
  3. Lounibos L, Conn JE, 2000. Malaria vector heterogeniety in South America. Am Entomol 46 : 238–249. [Google Scholar]
  4. Lehmann T, Licht M, Elissa N, Maega BT, Chimumbwa JM, Watsenga FT, Wondji CS, Simard F, Hawley WA, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94 : 133–147. [Google Scholar]
  5. Wright S, 1951. The genetical structure of populations. Ann Eugenics 15 : 323–354. [Google Scholar]
  6. Endler JA, 1977. Geographic variation, speciation, and clines. Monogr Popul Biol 10 : 1–246. [Google Scholar]
  7. Donnelly MJ, Simard F, Lehmann T, 2002. Evolutionary studies of malaria vectors. Trends Parasitol 18 : 75–80. [Google Scholar]
  8. Cohuet A, Dia I, Simard F, Raymond M, Fontenille D, 2004. Population structure of the malaria vector Anopheles funestus in Senegal based on microsatellite and cytogenetic data. Insect Mol Biol 13 : 251–258. [Google Scholar]
  9. Molina-Cruz A, de Merida AM, Mills K, Rodriguez F, Schoua C, Yurrita MM, Molina E, Palmieri M, Black WC IV, 2004. Gene flow among Anopheles albimanus populations in Central America, South America, and the Caribbean assessed by microsatellites and mitochondrial DNA. Am J Trop Med Hyg 71 : 350–359. [Google Scholar]
  10. Conn JE, Rosa-Freitas MG, Luz SL, Momen H, 1999. Molecular population genetics of the primary neotropical malaria vector Anopheles darlingi using mtDNA. J Am Mosq Control Assoc 15 : 468–474. [Google Scholar]
  11. Malafronte RS, Marrelli MT, Marinotti O, 1999. Analysis of ITS2 DNA sequences from Brazilian Anopheles darlingi (Diptera: Culicidae). J Med Entomol 36 : 631–634. [Google Scholar]
  12. Mirabello L, Conn J, 2006. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Heredity 96 : 311–321. [Google Scholar]
  13. Akhavan D, Musgrove P, Abrantes A, d’Gusmao R, 1999. Cost-effective malaria control in Brazil. Cost-effectiveness of a malaria control program in the Amazon Basin of Brazil, 1988– 1996. Soc Sci Med 49 : 1385–1399. [Google Scholar]
  14. Forattini O, 1962. Entomologica Medica. Volume 1. São Paulo, Brazil: Faculdade de Higiene e Saúde Publica, Universidad de São Paulo.
  15. Zimmerman RH, Voorham J, 1997. Use of insecticide-impregnated mosquito nets and other impregnated materials for malaria control in the Americas. Rev Panam Salud Publica 2 : 18–25. [Google Scholar]
  16. Gil LH, Alves FP, Zieler H, Salcedo JM, Durlacher RR, Cunha RP, Tada MS, Camargo LM, Camargo EP, Pereira-da-Silva LH, 2003. Seasonal malaria transmission and variation of anopheline density in two distinct endemic areas in Brazilian Amazonia. J Med Entomol 40 : 636–641. [Google Scholar]
  17. Charlwood JD, Alecrim WD, Fe N, Mangabeira J, Martins VJ, 1995. A field trial with Lambda-cyhalothrin (ICON) for the intradomiciliary control of malaria transmitted by Anopheles darlingi root in Rondônia, Brazil. Acta Trop 60 : 3–13. [Google Scholar]
  18. Duarte EC, Gyorkos TW, Pang L, Abrahamowicz M, 2004. Epidemiology of malaria in a hypoendemic Brazilian Amazon migrant population: a cohort study. Am J Trop Med Hyg 70 : 229–237. [Google Scholar]
  19. Póvoa MM, Conn JE, Schlichting CD, Amaral JC, Segura MN, Da Silva AN, Dos Santos CC, Lacerda RN, De Souza RT, Galiza D, Santa Rosa EP, Wirtz RA, 2003. Malaria vectors, epidemiology, and the re-emergence of Anopheles darlingi in Belém, Pará, Brazil. J Med Entomol 40 : 379–386. [Google Scholar]
  20. Duarte EC, Fontes CJ, 2002. Association between reported annual gold mining extraction and incidence of malaria in Mato Grosso-Brazil, 1985–1996. Rev Soc Bras Med Trop 35 : 665–668. [Google Scholar]
  21. Alecrim W, 1992. Malaria, prospecting activities and government policies in the Amazon region. Rev Inst Med Trop São Paulo 34 (Suppl 9): S48. [Google Scholar]
  22. de Andrade AL, Martelli CM, Oliveira RM, Arias JR, Zicker F, Pang L, 1995. High prevalence of asymptomatic malaria in gold mining areas in Brazil. Clin Infect Dis 20 : 475. [Google Scholar]
  23. Conn JE, Bollback J, Onyabe D, Robinson T, Wilkerson R, Póvoa M, 2001. Isolation of polymorphic microsatellite markers from the malaria vector Anopheles darlingi. Mol Ecol Notes 1 : 223–225. [Google Scholar]
  24. Marques AC, Gutierrez HC, 1994. Combate a malária no Brasil: evolução, situação atual e perspectivas. Rev Soc Bras Med Trop 27 (Suppl. 1): 91–108. [Google Scholar]
  25. Deane L, Causey O, Deane M, 1946. An illustrated key by adult female characteristics for identification of thirty-five species of Anophelines from the northeast and Amazon regions of Brazil. Am J Trop Med 18 : 1–18. [Google Scholar]
  26. Rubio-Palis Y, Zimmerman RH, 1997. Ecoregional classification of malaria vectors in the neotropics. J Med Entomol 34 : 499–510. [Google Scholar]
  27. Conn JE, Wilkerson RC, Segura MN, de Souza RT, Schlichting CD, Wirtz RA, Póvoa MM, 2002. Emergence of a new neo-tropical malaria vector facilitated by human migration and changes in land use. Am J Trop Med Hyg 66 : 18–22. [Google Scholar]
  28. Lewis P, Zaykin D, 2001. Genetic Data Analysis: Computer Program for the Analysis of Allelic Data. Sunderland MA: Sinauer Associates.
  29. Weir B, Cockerham C, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38 : 1358–1370. [Google Scholar]
  30. Guo SW, Thompson EA, 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48 : 361–372. [Google Scholar]
  31. Raymound M, Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86 : 248–249. [Google Scholar]
  32. Schneider S, Roessli D, Excoffier L, 2000. Arlequin: A Software for Population Genetic Data. Geneva, Switzerland: Genetics and Biometry Laboratory, University of Geneva.
  33. Slatkin M, 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139 : 457–462. [Google Scholar]
  34. Goudet J, 2001. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.3). Available from http://www.unil.ch/zea/softwares/fstat.html.
  35. Goodman S, 1997. Rst Calc: a collection of computer programs for calculating estimates of genetic differentitation from microsatellite data and determining their significance. Mol Ecol 6 : 881–885. [Google Scholar]
  36. Gaggiotti OE, Lange O, Rassmann K, Gliddon C, 1999. A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8 : 1513–1520. [Google Scholar]
  37. Nybom H, Esselink GD, Werlemark G, Vosman B, 2004. Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. Sect. Caninae DC. Heredity 92 : 139–150. [Google Scholar]
  38. Rousset F, 1977. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145 : 1219–1228. [Google Scholar]
  39. Mantel N, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27 : 209–220. [Google Scholar]
  40. Raybould A, Mogg F, Aldam C, Glidden CJ, Thorpe J, Clarke RT, 1998. The genetic structure of sea beet (Beta vulgaris ssp. maritima) populations. III. Detection of isolation by distance at microsatellite loci. Heredity 87 : 127–132. [Google Scholar]
  41. Cornuet JM, Luikart G, 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144 : 2001–2014. [Google Scholar]
  42. Peel D, Ovenden J, Peel S, 2004. NeEstimator: Software for Estimating Effective Population Size. Brisbane, Queensland, Australia: Queensland Government, Department of Primary Industries and Fisheries.
  43. Lehmann T, Hawley WA, Grebert H, Collins FH, 1998. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15 : 264–276. [Google Scholar]
  44. Holm S, 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6 : 65–70. [Google Scholar]
  45. Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR, 1993. Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am J Hum Genet 52 : 922–927. [Google Scholar]
  46. McCartney M, Brayer K, Levitan D, 2004. Polymorphic microsatellite loci from the red sea urchin, Strongylocentrotus franciscanus, with comments on heterozygote deficit. Mol Ecol Notes 4 : 226–228. [Google Scholar]
  47. Pinto J, Donnelly MJ, Sousa CA, Malta-Vacas J, Gil V, Ferreira C, Petrarca V, do Rosario VE, Charlwood JD, 2003. An island within an island: genetic differentiation of Anopheles gambiae in Sao Tome, west Africa, and its relevance to malaria vector control. Heredity 91 : 407–414. [Google Scholar]
  48. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB, 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89 : 238–247. [Google Scholar]
  49. Rosa-Freitas MG, Broomfield G, Priestman A, Milligan PJ, Momen H, Molyneux DH, 1992. Cuticular hydrocarbons, isoenzymes and behavior of three populations of Anopheles darlingi from Brazil. J Am Mosq Control Assoc 8 : 357–366. [Google Scholar]
  50. Manguin S, Wilkerson RC, Conn JE, Rubio-Palis Y, Danoff-Burg JA, Roberts DR, 1999. Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. Am J Trop Med Hyg 60 : 364–376. [Google Scholar]
  51. dos Santos JM, Maia J de F, Tadei WP, Rodriguez GA, 2003. Isoenzymatic variability among five Anopheles species belonging to the Nyssorhynchus and Anopheles subgenera of the Amazon region, Brazil. Mem Inst Oswaldo Cruz 98 : 247–253. [Google Scholar]
  52. Walton C, Handley JM, Collins FH, Baimai V, Harbach RE, Deesin V, Butlin RK, 2001. Genetic population structure and introgression in Anopheles dirus mosquitoes in South-east Asia. Mol Ecol 10 : 569–580. [Google Scholar]
  53. Onyabe DY, Conn JE, 2001. Genetic differentiation of the malaria vector Anopheles gambiae across Nigeria suggests that selection limits gene flow. Heredity 87 : 647–658. [Google Scholar]
  54. Temu EA, Hunt RH, Coetzee M, 2004. Microsatellite DNA polymorphism and heterozygosity in the malaria vector mosquito Anopheles funestus (Diptera: Culicidae) in east and southern Africa. Acta Trop 90 : 39–49. [Google Scholar]
  55. Lounibos LP, Nishimura N, Conn J, Lourenco-de-Oliveira R, 1995. Life history correlates of adult size in the malaria vector Anopheles darlingi. Mem Inst Oswaldo Cruz 90 : 769–774. [Google Scholar]
  56. Clements A, 1992. The Biology of Mosquitoes. Volume 1. Development, Nutrition and Reproduction. London: Chapman and Hall.
  57. Lounibos LP, Lima DC, Lourenço-de-Oliveira R, Escher RL, Nishimura N, 1998. Egg maturation in neotropical malaria vectors: one blood meal is usually enough. J Vector Ecol 23 : 195–201. [Google Scholar]
  58. Charlwood JD, Alecrim WA, 1989. Capture-recapture studies with the South American malaria vector Anopheles darlingi, Root. Ann Trop Med Parasitol 83 : 569–576. [Google Scholar]
  59. Kreutzer R, Kitzmiller J, Ferreira E, 1972. Inversion polymorphism in the salivary gland chromosomes of Anopheles darlingi Root. Mosq News 32 : 555–565. [Google Scholar]
  60. Tadei W, Santos JD, Rabbani M, 1982. Biologia de anofelinos amazonicos. V. Polimorfismo cromossomico de Anopheles darlingi Root (Diptera: Culicidae). Acta Amazon 12 : 353–369. [Google Scholar]
  61. Tadei W, Santos JD, 1982. Biologia de anofelinos amazonicos. VII. Estudo da variação de frequencias das inversões cromossomicas de Anopheles darlingi Root (Diptera: Culicidae). Acta Amazon 12 : 759–785. [Google Scholar]
  62. Astanei I, Gosling E, Wilson J, Powell E, 2005. Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Mol Ecol 14 : 1655–1666. [Google Scholar]
  63. Carnahan J, Zheng L, Taylor CE, Toure YT, Norris DE, Dolo G, Diuk-Wasser M, Lanzaro GC, 2002. Genetic differentiation of Anopheles gambiae s.s. populations in Mali, West Africa, using microsatellite loci. J Hered 93 : 249–253. [Google Scholar]
  64. Wright S, 1978. Evolution and Genetics of Populations. Volume V. Variability among and within Populations. Chicago: University of Chicago Press.
  65. Mukabayire O, Boccolini D, Lochouarn L, Fontenille D, Besansky NJ, 1999. Mitochondrial and ribosomal internal transcribed spacer (ITS2) diversity of the African malaria vector Anopheles funestus. Mol Ecol 8 : 289–297. [Google Scholar]
  66. Braginets OP, Minakawa N, Mbogo CM, Yan G, 2003. Population genetic structure of the African malaria mosquito Anopheles funestus in Kenya. Am J Trop Med Hyg 69 : 303–308. [Google Scholar]
  67. Walton C, Handley JM, Tun-Lin W, Collins FH, Harbach RE, Baimai V, Butlin RK, 2000. Population structure and population history of Anopheles dirus mosquitoes in Southeast Asia. Mol Biol Evol 17 : 962–974. [Google Scholar]
  68. Deane L, 1947. Observaçoes sobre a malaria na Amazonia brasileira. Rev Soc Brasil Med Trop 24 : 13–20. [Google Scholar]
  69. Shaw PW, Turan C, Wright JM, O’Connell M, Carvalho GR, 1999. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83 : 490–499. [Google Scholar]
  70. Estoup A, Angers B, 1998. Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. Carvalho G, ed. Advances in Molecular Ecology. Amsterdam: IOS Press, 55–86.
  71. Pinto J, Donnelly MJ, Sousa CA, Gil V, Ferreira C, Elissa N, do Rosario VE, Charlwood JD, 2002. Genetic structure of Anopheles gambiae (Diptera: Culicidae) in São Tome and Principe (West Africa): implications for malaria control. Mol Ecol 11 : 2183–2187. [Google Scholar]
  72. Voorham J, 2002. Intra-population plasticity of Anopheles darlingi’s (Diptera, Culicidae) biting activity patterns in the state of Amapá, Brazil. Rev Saude Publica 36 : 75–80. [Google Scholar]
  73. Loiola CC, da Silva CJ, Tauil PL, 2002. Malaria control in Brazil: 1965 to 2003. Rev Panam Salud Publica 11 : 235–244. [Google Scholar]
  74. Hufbauer RA, Bogdanowicz SM, Harrison RG, 2004. The population genetics of a biological control introduction: mitochondrial DNA and microsatellie variation in native and introduced populations of Aphidus ervi, a parasitoid wasp. Mol Ecol 13 : 337–348. [Google Scholar]
  75. Donnelly MJ, Licht MC, Lehmann T, 2001. Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol Biol Evol 18 : 1353–1364. [Google Scholar]
  76. Lehr M, 2003. Phylogenetics and Phylogeography of an Anopheline Cryptic Species Complex. Burlington, VT: University of Vermont.
  77. Deane LM, 1988. Malaria studies and control in Brazil. Am J Trop Med Hyg 38 : 223–230. [Google Scholar]
  78. Machado RL, Povoa MM, Calvosa VS, Ferreira MU, Rossit AR, dos Santos EJ, Conway DJ, 2004. Genetic structure of Plasmodium falciparum populations in the Brazilian Amazon region. J Infect Dis 190 : 1547–1555. [Google Scholar]
  79. Anderson TJ, Su XZ, Roddam A, Day KP, 2000. Complex mutations in a high proportion of microsatellite loci from the protozoan parasite Plasmodium falciparum. Mol Ecol 9 : 1599– 1608. [Google Scholar]
  80. Couto AA, Calvosa VS, Santos MA, de Souza JM, 1995. The evolution over time of the in-vitro resistance of Plasmodium falciparum to antimalarial drugs in 2 areas of the Brazilian Amazonia with distinct socioeconomic and geographic characteristics. Rev Soc Bras Med Trop 28 : 357–365. [Google Scholar]
  81. Cortese JF, Caraballo A, Contreras CE, Plowe CV, 2002. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis 186 : 999–1006. [Google Scholar]
  82. Calvosa VS, Adagu IS, Povoa MM, 2001. Plasmodium falciparum: emerging mefloquine resistance in vitro in Pará State, north Brazil. Trans R Soc Trop Med Hyg 95 : 330–331. [Google Scholar]
  83. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434 : 214–217. [Google Scholar]

Data & Media loading...

  • Received : 19 Dec 2005
  • Accepted : 11 Jan 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error