Volume 74, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Permethrin, in the form of a topical cream, is being increasingly used for community-based programs to control endemic scabies. The development of resistance has reduced the use of pyrethroids for the control of many arthropods of economic and health importance. The best recognized form of pyrethroid resistance, known as knockdown resistance or , has been linked to specific mutations in the target of these agents, the para-homologous voltage-sensitive sodium channel gene (). To develop tools to study resistance to pyrethroid acaricides, we cloned 3711 and 6151 bp, respectively, of cDNA and genomic fragments of the gene from scabies mite, . The sequence encompasses the major polymorphic amino acid residues associated with pyrethroid resistance. A polymerase chain reaction–based strategy has been developed that enables genotyping individual scabies mites. This will facilitate early detection and monitoring of pyrethroid resistance in scabies mite populations under drug selection pressure.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Taplin D, Meinking TL, Chen JA, Sanchez R, 1990. Comparison of crotamiton 10% cream (Eurax) and permethrin 5% cream (Eliminate) for the treatment of scabies in children. Pediatr Dermatol 7 : 67–73. [Google Scholar]
  2. Currie BJ, Connors CM, Krause VL, 1994. Scabies program in aboriginal communities. Med J Aust 161 : 636–637. [Google Scholar]
  3. Hoy W, 1996. Renal disease in Australian Aboriginals. Med J Aust 165 : 126–127. [Google Scholar]
  4. White AV, Hoy WE, McCredie DA, 2001. Childhood post-streptococcal glomerulonephritis as a risk factor for chronic renal disease in later life. Med J Aust 174 : 492–496. [Google Scholar]
  5. Hoy W, McDonald SP, 2004. Albuminuria: marker or target in indigenous populations. Kidney Int Suppl 92 : S25–S31. [Google Scholar]
  6. Carapetis JR, Connors C, Yarmirr D, Krause V, Currie BJ, 1997. Success of a scabies control program in an Australian aboriginal community. Pediatr Infect Dis J 16 : 494–499. [Google Scholar]
  7. Wong LC, Amega B, Barker R, Connors C, Dulla ME, Ninnal A, Cumaiyi MM, Kolumboort L, Currie BL, 2002. Factors supporting community sustainability of a community-based scabies control program. Austral J Dermatol 43 : 274–277. [Google Scholar]
  8. Hernandez-Perez, 1983. Resistance to antiscabietic drugs. J Am Acad Dermatol 8 : 1121–1122. [Google Scholar]
  9. Coskey R, 1979. Scabies resistance to treatment with crotamiton. Arch Dermatol 115 : 109. [Google Scholar]
  10. Roth W, 1991. Scabies resistant to lindane 1% lotion and crotamiton 10% cream. J Am Acad Dermatol 24 : 502–503. [Google Scholar]
  11. Currie BJ, Harumal P, McKinnon M, Walton S, 2004. First documentation of in vivo and in vitro ivermectin resistance in Sarcoptes scabiei. Clin Infect Dis 39 : e8–12. [Google Scholar]
  12. Witkowski JA, Parish LC, 2002. Pediculosis and resistance: the perennial problem. Clin Dermatol 20 : 87–92. [Google Scholar]
  13. Bailey AM, Prociv P, 2000. Persistent head lice following multiple treatments: evidence for insecticide resistance in Pediculus humanus capitis. Australas J Dermatol 41 : 250–254. [Google Scholar]
  14. Fraser J, 1994. Permethrin: a top end viewpoint and experience. Med J Aust 160 : 806. [Google Scholar]
  15. Walton SF, Myerscough MR, Currie BJ, 2000. Studies in vitro on the relative efficacy of current acaricides for Sarcoptes scabiei var hominis. Trans R Soc Trop Med Hyg 94 : 92–96. [Google Scholar]
  16. Vais H, Williamson MS, Devonshire AL, Usherwood PNR, 2001. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag Sci 57 : 877–888. [Google Scholar]
  17. Miyazaki M, Ohyama K, Dunlap DY, Matsumura F, 1996. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and housefly (Musca domestica). Mol Gen Genet 252 : 61–68. [Google Scholar]
  18. Dong K, 1997. A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in the German cockroach. Insect Biochem Mol Biol 27 : 93–100. [Google Scholar]
  19. Guerrero FD, Jamroz RC, Kammlah D, Kunz SE, 1997. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: identification of kdr and super- kdr point mutations. Insect Biochem Mol Biol 27 : 745–755. [Google Scholar]
  20. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D, 1998. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae. Insect Mol Biol 7 : 179–184. [Google Scholar]
  21. Martinez-Torres D, Chevillon C, Brun-Barale A, Berge JB, Pasteur N, Pauron D, 1999a. Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L mosquitoes. Pest Sci 55 : 1012–1020. [Google Scholar]
  22. Goldin AL, 1992. Maintenance of Xenopus laevis and oocyte injection. Meth Enzymol 207 : 266–297. [Google Scholar]
  23. He H, Chen AC, Davey RB, Ivie GW, George JE, 1999. Identification of a point mutation in the para-type sodium channel gene from a pyrethroid-resistant cattle tick. Biochem Biophysic Res Com 261 : 558–561. [Google Scholar]
  24. Wang R, Liu Z, Dong K, Elzen PJ, Pettis J, Huang ZY, 2002. Association of novel mutations in a sodium channel gene with fluvalinate resistance in the mite, Varroa destructor. J Apicultural Res 40 : 17–25. [Google Scholar]
  25. Fischer K, Holt D, Harumal P, Currie B, Walton S, Kemp D, 2003. Generation and characterization of cDNA clones from Sarcoptes scabiei var hominis for an expressed sequence tag library: identification of homologues of house dust mite allergens. Am J Trop Med Hyg 68 : 61–64. [Google Scholar]
  26. Mattson JG, Ljunggren EL, Bergstrom K, 2001. Paramyosin from the parasitic mite Sarcoptes scabiei: cDNA cloning and heterologous expression. Parasitology 122 : 555–562. [Google Scholar]
  27. Mounsey KE, Holt DC, Fischer K, Kemp DJ, Currie BJ, Walton SF, 2005. Analysis of Sarcoptes scabiei finds no evidence of infection with Wolbachia. Int J Parasitol 35 : 131–135. [Google Scholar]
  28. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL, 1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet 252 : 51–60. [Google Scholar]
  29. Wang R, Huang ZH, Dong K, 2003. Molecular characterization of an arachnid sodium channel gene from the varroa mite (Varroa destructor). Insect Biochem Mol Biol 33 : 733–739. [Google Scholar]
  30. Catterall W, 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26 : 13–25. [Google Scholar]
  31. Soderlund DM, Knipple DC, 2003. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33 : 563–577. [Google Scholar]
  32. Devonshire AL, 1991. Role of esterases in resistance of insects to insecticides. Biochem Soc Trans 19 : 755–759. [Google Scholar]
  33. Devonshire AL, Field LM, 1991. Gene amplification and insecticide resistance. Annu Rev Entomol 36 : 1–23. [Google Scholar]
  34. Prichard RK, 2001. Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends Parasitol 17 : 445–453. [Google Scholar]
  35. Martinez-Torres D, Foster SP, Field LM, Devonshire AL, Williamson MS, 1999b. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Mol Biol 8 : 339–346. [Google Scholar]
  36. Schuler TH, Martinez-Torres D, Thompson AJ, Denholm I, Devonshire AL, Duce JR, Williamson MS, 1998. Toxicological electrophysiological and molecular characterization of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L). Pestic Biochem Physiol 59 : 169–192. [Google Scholar]
  37. Hernandez R, Haiqi H, Chen AC, Waghela SD, Wayne Ivie G, George JE, Gale Wagner G, 2000. Identification of a point mutation in an esterase gene in different populations of the southern cattle tick, Boophilus microplus. Insect Biochem Mol Biol 30 : 969–977. [Google Scholar]
  38. Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG, 1997. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci USA 94 : 7464–7468. [Google Scholar]
  39. Heidari R, Devonshire AL, Campbell BE, Bell KL, Dorrian SJ, Oakeshott JG, Russell RJ, 2004. Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina. Insect Biochem Mol Biol 34 : 353–363. [Google Scholar]
  40. De Jersey J, Nolan P, Davey PA, Riddles PW, 1985. Separation and characterization of pyrethroid-hydrolyzing esterases of the cattle tick, Boophilus microplus. Pestic Biochem Physiol 23 : 349–357. [Google Scholar]
  41. Mouches C, Pasteur N, Berge JB, Hyrien O, Raymond M, De Saint Vincent BR, De Silvestre M, Georghiou GP, 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233 : 778–780. [Google Scholar]
  42. Field LM, Devonshire AL, Forde BG, 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz) results from amplification of an esterase gene. Biochem J 251 : 309–312. [Google Scholar]
  43. Pruett JH, Guerrero FD, Hernandez R, 2002. Isolation and identification of an esterase from a Mexican strain of Boophilus microplus (Acari: Ixodidae). J Econ Entomol 95 : 1001–1007. [Google Scholar]
  44. Hemingway J, Karunaratne SH, 1998. Mosquito carboxyl-esterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol 12 : 1–12. [Google Scholar]
  45. Thackeray JR, Ganetzky B, 1995. Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para. Genetics 141 : 203–214. [Google Scholar]
  46. Lee SH, Ingles PJ, Knipple DC, 2002. Developmental regulation of alternative exon usage in the house fly Vssc1 sodium channel gene. Invert Neurosci 4 : 125–133. [Google Scholar]
  47. Tan J, Liu Z, Nomura Y, Goldin AL, Dong K, 2002. Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J Neurosci 22 : 5300–5309. [Google Scholar]

Data & Media loading...

  • Received : 06 Jun 2005
  • Accepted : 08 Dec 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error