Volume 74, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The main vector of malaria in sub-Saharan Africa, , is subdivided into five chromosomal forms. Three of them (i.e., BAMAKO, SAVANNA, and MOPTI) are found in sympatry in Mali, where MOPTI can be distinguished from the other two forms based on differences in the ribosomal DNA locus. However, no molecular markers are available to distinguish BAMAKO from SAVANNA. We examined the banding patterns of 139 amplified fragment length polymorphism primer combinations in an attempt to identify diagnostic differences between SAVANNA and BAMAKO. Despite screening > 10,000 bands, no diagnostic differences were found. However, additional AFLP analyses indicated that BAMAKO is genetically differentiated from SAVANNA, with a significant Φ value of 0.072. This could indicate that gene flow between these forms is restricted in at least some portion of the genome and the lack of identifiable fixed differences between the two forms is probably due to their recent origin.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Coluzzi M, Petrarca V, Di Deco MA, 1985. Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. Boll Zool 52 : 45–63. [Google Scholar]
  2. Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V, 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298 : 1415–1418. [Google Scholar]
  3. Favia G, della Torre A, Bagayoko M, Lanfrancotti A, Sagnon N’F, Touré YT, Coluzzi M, 1997. Molecular identifications of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Mol Biol 6 : 377–383. [Google Scholar]
  4. della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M, 2001. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol 10 : 9–18. [Google Scholar]
  5. Gentile G, Slotman M, Ketmaier V, Powell JR, Caccone A, 2001. Attempts to molecularly distinguish cryptic taxa in Anopheles gambiae s.s., and the problem of taxonomic status. Insect Mol Biol 10 : 25–32. [Google Scholar]
  6. Taylor C, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, Edillo FE, Lanzaro GC, 2001. Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, West Africa. Genetics 157 : 743–750. [Google Scholar]
  7. Tripet F, Toure YT, Taylor CE, Norris DE, Dolo G, Lanzaro GC, 2001. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol Ecol 10 : 1725–1732. [Google Scholar]
  8. della Torre A, Tu Z, Petrarca V, 2005. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Mol Biol 35 : 755–769. [Google Scholar]
  9. Wang RL, Zheng L, Touré Y, Dandekar T, Kafatos F, 2001. When genetic distance matters: measuring genetic differentiation at microsatellite loci in whole-genome scans of recent and incipient species. Proc Natl Acad Sci USA 98 : 10769–10774. [Google Scholar]
  10. Lehmann T, Licht M, Elissa N, Maega BTA, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94 : 133–147. [Google Scholar]
  11. Stump AD, Shoener JA, Constantini C, Sagnon NF, Besansky NJ, 2005. Sex-linked differentiation between incipient species of Anopheles gambiae. Genetics 169 : 1509–1519. [Google Scholar]
  12. Lanzaro GC, Touré YT, Carnahan J, Zheng L, Dolo G, Traoré SF, Petrarca V, Vernick KD, Taylor CE, 1998. Complexities in the genetic structure of Anopheles gambiae populations in West Africa as revealed by microsatellite DNA analysis. Proc Natl Acad Sci USA 95 : 14260–14265. [Google Scholar]
  13. Tripet F, Dolo G, Lanzaro GC, 2005. Multilevel analyses of genetic differentiation in Anopheles gambiae s.s. reveal patterns of gene flow important for malaria-fighting mosquito projects. Genetics 169 : 315–324. [Google Scholar]
  14. Mukabayire O, Caridi J, Wang X, Touré YT, Coluzzi M, Besansky NJ, 2001. Patterns of DNA sequence variation in chromosomally recognized taxa of Anopheles gambiae: evidence from rDNA and single-copy loci. Insect Mol Biol 10 : 33–46. [Google Scholar]
  15. Touré YT, Petrarca V, Traoré S, Coulibaly A, Maiga HM, Sankare O, Sow M, Di Deco MA, Coluzzi M, 1998. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia 40 : 477–511. [Google Scholar]
  16. Fanello C, Petrarca V, della Torre A, Santolamazza F, Dolo G, Coulibaly M, Alloueche A, Curtis CF, Touré YT, Coluzzi M, 2003. The pyrethroid knock-down resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within An. gambiae s.s. Insect Mol Biol 12 : 241–245. [Google Scholar]
  17. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23 : 4407–4414. [Google Scholar]
  18. Mendelson TC, Shaw KL 2005. Use of AFLP markers in surveys of arthropod biodiversity. Methods Enzymol 395 : 161–177. [Google Scholar]
  19. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P, 2003. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4 : 981–994. [Google Scholar]
  20. Albertson RC, Markert JA, Danley PD, Kocher TD, 1999. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, east Africa. Proc Natl Acad Sci USA 96 : 5107–5110. [Google Scholar]
  21. della Torre A, 1997. Polytene chromosome preparation from Anopheline mosquitoes. Crampton JM, Beard CB, Louis C, eds. Molecular Biology of Insect Disease Vectors. London: Chapman and Hall, 329–336.
  22. Coluzzi M, Sabatini A, Petrarca V, Di Deco MA, 1979. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73 : 483–497. [Google Scholar]
  23. Post R, Flook PK, Millest AL, 1993. Methods for the preservation of insects for DNA studies. Biochem Systematics Ecol 21 : 85–92. [Google Scholar]
  24. Peakall R, Smouse PE, 2001. GenAlEx version 5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Canberra, Australia; Australian National University. Available from http://www.anu.edu.au/BoZo/GenAlEx/
  25. Excoffier L, Smouse P, Quatro J, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131 : 479–491. [Google Scholar]
  26. Rolf FJ, 1994. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System. Version 1.80. Setauket, NY: Exeter Software.
  27. Duchesne P, Bernatchez L, 2002. AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2 : 380–383. [Google Scholar]
  28. Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I, 2002. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11 : 139–151. [Google Scholar]
  29. Munstermann LE, 1994. Unexpected genetic consequences of colonization and inbreeding-allozyme tracking in Culicidae (Diptera). Ann Entomol Soc Am 87 : 157–164. [Google Scholar]
  30. Norris DE, Shurtleff AC, Touré YT, Lanzaro GC, 2001. Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae s.s. (Diptera: Culicidae). J Med Entomol 38 : 336–340. [Google Scholar]
  31. Garcia BA, Caccone A, Mathiopoulos KD, Powell JR, 1996. Inversion monophyly in African Anopheline malaria vectors. Genetics 143 : 1313–1320. [Google Scholar]
  32. Krimbass CB, Powell JR, 1992. Drosophila Inversion Polymorphism. Boca Raton, FL: CRC Press.
  33. Diabate A, Baldet T, Chandre C, Dabire KR, Kenge P, Guiguemde TR, Simard F, Guillet P, Hemingway J, Hougard JM, 2003. KDR mutation, a genetic marker to assess events of introgression between molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in the tropical savannah area of West Africa. J Med Entomol 40 : 195–198. [Google Scholar]
  34. Favia G, Lanfrancotti A, Spanos L, Sidén-Kiamos I, Louis C, 2001. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol 10 : 19–23. [Google Scholar]
  35. Gentile G, della Torre A, Maegga B, Powell JR, Caccone A, 2002. Genetic differentiation in the African malaria vector, Anopheles gambiae s.s., and the problem of taxonomic status. Genetics 161 : 1561–1578. [Google Scholar]
  36. Turner TL, Hahn MW, Nuzhdin SV, 2005. Genomic islands of speciation. PLoS Biol 3 : 1572–1578. [Google Scholar]
  37. Gentile G, Santolamazza F, Fanello C, Petrarca V, Caccone A, della Torre A, 2004. Variation in an intron sequence of the voltage-gated sodium channel gene correlates with genetic differentiation between Anopheles gambiae s.s. molecular forms. Insect Mol Biol 13 : 371–377. [Google Scholar]
  38. Kai Y, Nakayama K, Nakabo T, 2002. Genetic differences among three colour morphotypes of the black rockfish, Sebastes inermis, inferred from mtDNA and AFLP analyses. Mol Ecol 11 : 2591–2598. [Google Scholar]
  39. Bleeker W, 2003. Hybridization and Rorippa austriaca (Brassi-caceae) invasion in Germany. Mol Ecol 12 : 1831–1841. [Google Scholar]
  40. Haig SM, Mullins TD, Forsman ED, Trail PW, 2003. Genetic identification of spotted owls, barred owls and their hybrids: legal implications of hybrid identity. Conservation Biol 18 : 1347–1357. [Google Scholar]
  41. Garzón CD, Geiser DM, Woorman GW, 2005. Diagnosis and population analysis of Pythium species using AFLP fingerprinting. Plant Dis 89 : 81–89. [Google Scholar]
  42. Wu CA, Campbell DR, 2005. Cytoplasmic and nuclear markers reveal contrasting patterns of spatial and genetic structure in a natural Ipomopsis hybrid zone. Mol Ecol 14 : 781–792. [Google Scholar]
  43. Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Weil C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettni P, Buitti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A, 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breeding 3 : 381–390. [Google Scholar]
  44. della Torre A, Merzagora L, Powell JR, Coluzzi M, 1997. Selective introgression of paracentric inversions between two sibling species of the Anopheles gambiae complex. Genetics 246 : 239–244. [Google Scholar]
  45. Besansky NJ, Krzywinski J, Lehmann T, Simard F, Kern M, Mukabayire O, Fontenille D, Touré YT, Sagnon N’F, 2003. Semipermeable species boundaries between Anopheles gambiae and An. arabiensis: evidence from multilocus DNA sequence variation. Proc Natl Acad Sci USA 100 : 10818–10823. [Google Scholar]
  46. Slotman MA, della Torre A, Calzetta M, Powell JR, 2005. Differential introgression of chromosomal regions between Anopheles gambiae and An. arabiensis. Am J Trop Med Hyg 73 : 326–335. [Google Scholar]
  47. Lehmann T, Hawley WA, Grebert H, Collins FH, 1998. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15 : 264–276. [Google Scholar]

Data & Media loading...

  • Received : 09 Aug 2005
  • Accepted : 19 Nov 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error