Volume 74, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Although malaria contributes to a significant public health burden, malaria diagnosis relies heavily on either non-specific clinical symptoms or blood smear microscopy methods developed in the 1930s. These approaches severely misrepresent the number of infected individuals and the reservoir of parasites in malaria-endemic communities and undermine efforts to control disease. Limitations of conventional microscopy-based diagnosis center on time required to examine slides, time required to attain expertise sufficient to diagnose infection accurately, and attrition from the limited number of existing malaria microscopy experts. Earlier studies described magnetic properties of but did not refine methods to diagnosis infection by all four human malaria parasite species. Here, following specific technical procedures, we show that it is possible to concentrate all four human malaria parasite species, at least 40-fold, on microscope slides using very inexpensive magnets through an approach termed magnetic deposition microscopy. This approach delivered greater sensitivity than a thick smear preparation while maintaining the clarity of a thin smear to simplify species-specific diagnosis. Because the magnetic force necessary to concentrate parasites on the slide is focused at a precise position relative to the magnet surface, it is possible to examine a specific region of the slide for parasitized cells and avoid the time-consuming process of scanning the entire slide surface. These results provide insight regarding new strategies for performing malaria blood smear microscopy.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Bruce-Chwatt LJ, 1985. Essential Malariology. London: William Heinemann Medical Books.
  2. World Health Organization, 1957. Malaria: Sixth Report of the Expert Committee. Geneva: World Health Organization.
  3. World Health Organization, 1969. Re-examination of the Global Strategy of Malaria Eradication. Geneva: World Health Organization.
  4. Anonymous, 2000. New Perspectives in Malaria Diagnosis. Geneva: World Health Organization.
  5. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434 : 214–217. [Google Scholar]
  6. Shiff CJ, Premji Z, Minjas JN, 1993. The rapid manual Para-Sight-F test. A new diagnostic tool for Plasmodium falciparum infection. Trans R Soc Trop Med Hyg 87 : 646–648. [Google Scholar]
  7. Palmer CJ, Lindo JF, Klaskala WI, Quesada JA, Kaminsky R, Baum MK, Ager AL, 1998. Evaluation of the OptiMAL test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparum malaria. J Clin Microbiol 36 : 203–206. [Google Scholar]
  8. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61 : 315–320. [Google Scholar]
  9. Mehlotra RK, Lorry K, Kastens W, Miller SM, Alpers MP, Bockarie M, Kazura JW, Zimmerman PA, 2000. Random distribution of mixed species malaria infections in Papua New Guinea. Am J Trop Med Hyg 62 : 225–231. [Google Scholar]
  10. McNamara DT, Thomson JM, Kasehagen LJ, Zimmerman PA, 2004. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans. J Clin Microbiol 42 : 2403–2410. [Google Scholar]
  11. Moody A, 2002. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 15 : 66–78. [Google Scholar]
  12. Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW, 2004. Why do we need to know more about mixed Plasmodium species infections in humans? Trends in Parasitology 20 : 440–447. [Google Scholar]
  13. Paul F, Roath S, Melville D, Warhurst DC, Osisanya JO, 1981. Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. Lancet 2 : 70–71. [Google Scholar]
  14. Nalbandian RM, Sammons DW, Manley M, Xie L, Sterling CR, Egen NB, Gingras BA, 1995. A molecular-based magnet test for malaria. Am J Clin Pathol 103 : 57–64. [Google Scholar]
  15. Fang B, Zborowski M, Moore LR, 1999. Detection of rare MCF-7 breast carcinoma cells from mixtures of human peripheral leukocytes by magnetic deposition analysis. Cytometry 36 : 294–302. [Google Scholar]
  16. Zborowski M, Fuh CB, Green R, Baldwin NJ, Reddy S, Douglas T, Mann S, Chalmers JJ, 1996. Immunomagnetic isolation of magnetoferritin-labeled cells in a modified ferrograph. Cytometry 24 : 251–259. [Google Scholar]
  17. Zborowski M, Fuh CB, Green R, Sun L, Chalmers JJ, 1995. Analytical magnetapheresis of ferritin-labeled lymphocytes. Anal Chem 67 : 3702–3712. [Google Scholar]
  18. Zborowski M, Malcheski PS, Savon SR, Green R, Holl GS, Nose Y, 1991. Modification of ferrography method for analysis of lymphocytes and bacteria. Wear 142 : 135–149. [Google Scholar]
  19. Zborowski M, Malchesky PS, Jan TF, Hall GS, 1992. Quantitative separation of bacteria in saline solution using lanthanide Er(III) and a magnetic field. J Gen Microbiol 138 : 63–68. [Google Scholar]
  20. Zborowski M, 1997. Physics of the magnetic cell sorting. In: Hafeli U, Schutt W, Teller J, Zborowski M, eds. Scientific and Clinical Applications of Magnetic Microcarriers: An Overview. New York: Plenum Press; 205–231.
  21. Carter V, Cable HC, Underhill BA, Williams J, Hurd H, 2003. Isolation of Plasmodium berghei ookinetes in culture using Nycodenz density gradient columns and magnetic isolation. Malar J 2 : 35. [Google Scholar]
  22. Snounou G, White NJ, 2004. The co-existence of Plasmodium: sidelights from falciparum and vivax malaria in Thailand. Trends Parasitol 20 : 333–339. [Google Scholar]
  23. Moore LR, Fujioka H, Williams PS, Chalmers JJ, Grimberg BT, Zimmerman PA, Zborowski M, 2006. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J (in press).

Data & Media loading...

  • Received : 03 Aug 2005
  • Accepted : 11 Jan 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error