Volume 74, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The cuticular hydrocarbon (CH) technique of age grading mosquitoes was evaluated for use on laboratory-reared (L.), (Laveran), and (Skuse). Gas chromatography/mass spectroscopy was used to determine the relative abundance of five alkanes in hexane extracts from the legs of individual mosquitoes. Age-related changes to relative hydrocarbon abundances were observed from and , which are vectors of malaria and dengue, respectively. Female were classified into two age categories (1–5 and ≥ 5 days old at 27°C) and into three age categories (1 to < 5, 5 to < 9 and ≥ 9 days old at 27°C) based on these changes. However, there was an absence of predicable age-related changes to hydrocarbon abundance in Simulation modeling was used to construct sequential sampling guidelines for the application of this technique to estimate the survivorship of and populations. These guidelines define the relationship between the survival rate, number of mosquitoes sampled, CH-based predictions of age, and the accuracy of survival rate estimates. They demonstrated, for example, that if 19% of a population of is estimated to be ≥ 9 days old by CH analysis, an estimate of the daily survival rate from the exponential model should be based on a sample of 200 mosquitoes for the survival rate estimate to be within 5% of the actual rate. However, if only 10% of the population is estimated to be ≥ 9 days old, 500 mosquitoes would need to be analyzed for the survival rate estimate to be of equivalent accuracy.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Ross R, 1911. The Prevention of Malaria. London: John Murray.
  2. Macdonald G, 1952. The objectives of residual insecticide campaigns. Trans R Soc Trop Med Hyg 46 : 227–235. [Google Scholar]
  3. Garrett-Jones C, 1964. Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature 204 : 1173–1175. [Google Scholar]
  4. Smith DL, McKenzie FE, 2004. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 3 : 13. [Google Scholar]
  5. Min KT, Benzer S, 1997. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A 94 : 10792–10796. [Google Scholar]
  6. Brownstein JS, Hett E, O’Neill SL, 2003. The potential of virulent Wolbachia to modulate disease transmission by insects. J Invertebr Pathol 84 : 24–29. [Google Scholar]
  7. Detinova TS, 1962. Age-Grouping Methods in Diptera of Medical Importance with Special Reference to Some Vectors of Malaria. Geneva: World Health Organization.
  8. Tyndale-Biscoe M, 1984. Age-grading methods in adult insects: a review. Bull Entomol Res 74 : 341–377. [Google Scholar]
  9. Lehane MJ, 1985. Determining the age of an insect. Parasitol Today 1 : 81–85. [Google Scholar]
  10. Service MW, 1993. Estimation of the mortalities of the immature stages and adults. Service MW, ed. Mosquito Ecology: Field Sampling Methods. Essex, United Kingdom: Elsevier Science Publishers, 752–889.
  11. Hayes EJ, Wall R, 1999. Age-grading adult insects: a review of techniques. Physiol Entomol 24 : 1–10. [Google Scholar]
  12. Blomquist GJ, Nelson DR, de Renobales M, 1987. Chemistry, biochemistry, and physiology of insect cuticular lipids. Arch Insect Biochem Physiol 6 : 227–265. [Google Scholar]
  13. Montooth KL, Gibbs AG, 2003. Cuticular pheromones and water balance in the house fly, Musca domestica. Comp Biochem Physiol A Mol Integr Physiol 135 : 457–465. [Google Scholar]
  14. Dietemann V, Peeters C, Liebig J, Thivet V, Holldobler B, 2003. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc Natl Acad Sci U S A 100 : 10341–10346. [Google Scholar]
  15. Howard RW, Jackson LL, Banse H, Blows MW, 2003. Cuticular hydrocarbons of Drosophila birchii and D. serrata: identification and role in mate choice in D. serrata. J Chem Ecol 29 : 961–976. [Google Scholar]
  16. Greene MJ, Gordon DM, 2003. Social insects: cuticular hydrocarbons inform task decisions. Nature 423 : 32. [Google Scholar]
  17. Carlson DA, Service MW, 1979. Differentiation between species of the Anopheles gambiae Giles complex (Diptera: Culicidae) by analysis of cuticular hydrocarbons. Ann Trop Med Parasitol 73 : 589–592. [Google Scholar]
  18. Carlson DA, Service MW, 1980. Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science 207 : 1089–1091. [Google Scholar]
  19. Anyanwu GI, Davies DH, Molyneux DH, Priestman A, 2001. Cuticular-hydrocarbon discrimination between Anopheles gambiae s.s. and An. arabiensis larval karyotypes. Ann Trop Med Parasitol 95 : 843–852. [Google Scholar]
  20. Anyanwu GI, Molyneux DH, Phillips A, 2000. Variation in cuticular hydrocarbons among strains of the Anopheles gambiae sensu stricto by analysis of cuticular hydrocarbons using gas liquid chromatography of larvae. Mem Inst Oswaldo Cruz 95 : 295–300. [Google Scholar]
  21. Anyanwu GI, Davies DH, Molyneux DH, Phillips A, Milligan PJ, 1993. Cuticular hydrocarbon discrimination/variation among strains of the mosquito, Anopheles (Cellia) stephensi Liston. Ann Trop Med Parasitol 87 : 269–275. [Google Scholar]
  22. Kruger EL, Pappas CD, 1993. Geographic variation of cuticular hydrocarbons among fourteen populations of Aedes albopictus (Diptera: Culicidae). J Med Entomol 30 : 544–548. [Google Scholar]
  23. Horne GL, Priestman AA, 2002. The chemical characterization of the epicuticular hydrocarbons of Aedes aegypti (Diptera: Culicidae). Bull Entomol Res 92 : 287–294. [Google Scholar]
  24. Chen CS, Mulla MS, March RB, Chaney JD, 1990. Cuticular hydrocarbon patterns in Culex quinquefasciatus as influenced by age, sex, and geography. Bull Soc Vector Ecol 15 : 129–139. [Google Scholar]
  25. Desena ML, Clark JM, Edman JD, Symington SB, Scott TW, Clark GG, Peters TM, 1999. Potential for aging female Aedes aegypti (Diptera: Culicidae) by gas chromatographic analysis of cuticular hydrocarbons, including a field evaluation. J Med Entomol 36 : 811–823. [Google Scholar]
  26. Desena ML, Edman JD, Clark JM, Symington SB, Scott TW, 1999. Aedes aegypti (Diptera: Culicidae) age determination by cuticular hydrocarbon analysis of female legs. J Med Entomol 36 : 824–830. [Google Scholar]
  27. Brei B, Edman JD, Gerade B, Clark JM, 2004. Relative abundance of two cuticular hydrocarbons indicates whether a mosquito is old enough to transmit malaria parasites. J Med Entomol 41 : 807–809. [Google Scholar]
  28. Davidson G, 1954. Estimation of the survival-rate of anopheline mosquitoes in nature. Nature 174 : 792–794. [Google Scholar]
  29. Birley MH, Rajagopalan PK, 1981. Estimation of the survival and biting rates of Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 18 : 181–186. [Google Scholar]
  30. Holmes PR, Birley MH, 1987. An improved method for survival rate analysis from time series of haematophagous dipteran populations. J Anim Ecol 56 : 427–440. [Google Scholar]
  31. Lord CC, Baylis M, 1999. Estimation of survival rates in haematophagous insects. Med Vet Entomol 13 : 225–233. [Google Scholar]
  32. Southwood TRE, 1978. Ecological Methods with Particular Reference to the Study of Insect Populations. London: Chapman and Hall.
  33. Pieters EP, 1978. Bibiolography of sequential sampling plans for insects. Bull Entomol Soc Am 24 : 372–374. [Google Scholar]
  34. Elliott NC, Giles KL, Royer TA, Kindler SD, Tao FL, Jones DB, Cuperus GW, 2003. Fixed precision sequential sampling plans for the greenbug and bird cherry-oat aphid (Homoptera: Aphididae) in winter wheat. J Econ Entomol 96 : 1585–1593. [Google Scholar]
  35. Schexnayder HP Jr, Reagan TE, Ring DR, 2001. Sampling for the sugarcane borer (Lepidoptera: Crambidae) on sugarcane in Louisiana. J Econ Entomol 94 : 766–771. [Google Scholar]
  36. McLaughlin RE, Brown MA, Vidrine MF, 1987. The sequential sampling of Psorophora columbiae larvae in rice fields. J Am Mosq Control Assoc 3 : 423–428. [Google Scholar]
  37. Mogi M, Choochote W, Khamboonruang C, Suwanpanit P, 1990. Applicability of presence-absence and sequential sampling for ovitrap surveillance of Aedes (Diptera: Culicidae) in Chiang Mai, northern Thailand. J Med Entomol 27 : 509–514. [Google Scholar]
  38. Lindblade KA, Walker ED, Wilson ML, 2000. Early warning of malaria epidemics in African highlands using Anopheles (Diptera: Culicidae) indoor resting density. J Med Entomol 37 : 664–674. [Google Scholar]
  39. Magbity EB, Lines JD, 2002. Spatial and temporal distribution of Anopheles gambiae s. l. (Diptera: Culicidae) in two Tanzanian villages: implications for designing mosquito sampling routines. Bull Entomol Res 92 : 483–488. [Google Scholar]
  40. Gerade BB, Lee SH, Scott TW, Edman JD, Harrington LC, Kitthawee S, Jones JW, Clark JM, 2004. Field validation of Aedes aegypti (Diptera: Culicidae) age estimation by analysis of cuticular hydrocarbons. J Med Entomol 41 : 231–238. [Google Scholar]
  41. Hadley NF, 1984. Cuticle: ecological significance. Bereiter-Hahn J, Matolsky AG, Richards KS, eds. Biology of the Integument. Berlin: Springer-Verlag, 685–702.
  42. Reisen WK, Milby MM, Reeves WC, Meyer RP, Bock ME, 1983. Population ecology of Culex tarsalis (Diptera: Culicidae) in a foothill environment of Kern county, California: temporal changes in female relative abundance, reproductive status, and survivorship. Ann Entomol Soc Am 76 : 800–808. [Google Scholar]
  43. Birley MH, Boorman JPT, 1982. Estimating the survival and biting rates of haematophagus insects, with particular reference to the Culicoides obsoletus group (Diptera: Ceratopogonidae) in southern England. J Anim Ecol 51 : 135–148. [Google Scholar]
  44. Birley MH, Charlwood JD, 1989. The effect of moonlight and other factors on the oviposition cycle of malaria vectors in Madang, Papua New Guinea. Ann Trop Med Parasitol 83 : 415–422. [Google Scholar]
  45. Hii JL, Birley MH, Sang VY, 1990. Estimation of survival rate and oviposition interval of Anopheles balabacensis mosquitoes from mark-recapture experiments in Sabah, Malaysia. Med Vet Entomol 4 : 135–140. [Google Scholar]
  46. Wald A, 1945. Sequential tests of statistical hypotheses. Ann Math Stat 16 : 117–186. [Google Scholar]
  47. Fowler GF, Lynch AM, 1987. Sampling plans in insect pest management based on Wald’s sequential probability ratio test. Environ Entomol 16 : 345–354. [Google Scholar]
  48. Taylor DS, 1993. Distribution and ecology of Haemagogus aeritinctus in Belize, Central America. J Am Mosq Control Assoc 9 : 102–103. [Google Scholar]
  49. Buonaccorsi JP, Harrington LC, Edman JD, 2003. Estimation and comparison of mosquito survival rates with release-recapture-removal data. J Med Entomol 40 : 6–17. [Google Scholar]
  50. Clements AN, Paterson GD, 1981. The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 18 : 373–399. [Google Scholar]
  51. Harrington LC, Buonaccorsi JP, Edman JD, Costero A, Kittayapong P, Clark GG, Scott TW, 2001. Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand. J Med Entomol 38 : 537–547. [Google Scholar]
  52. Briet OJ, 2002. A simple method for calculating mosquito mortality rates, correcting for seasonal variations in recruitment. Med Vet Entomol 16 : 22–27. [Google Scholar]

Data & Media loading...

  • Received : 31 May 2005
  • Accepted : 24 Oct 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error