Volume 74, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


In the current study, to elucidate the clinical features of severe malaria, we performed whole-body positron emission tomography (PET) with F-fluorodeoxyglucose (FDG) of –infected acute-phase Japanese macaques. The infected monkeys clearly exhibited increase in splenic FDG uptake indicating marked enhancement of glucose metabolism. The standardized uptake values (SUVs) of the spleen in the infected monkeys were significantly higher than those in the uninfected monkey. At autopsy, splenomegaly was clearly present in all infected monkeys, and histopathologic findings included hyperplasia of lymphoid follicles in white pulp, a large number of activated macrophage, and congestion of parasitized red blood cells (PRBCs) and malaria pigments in red pulp. We suggest that increase in splenic glucose uptake may thus be closely related to activation of splenic clearance system against blood-stage malarial parasites.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Arguin PM, Barber A, Kozarsky P, Mali S, Newman R, Parise M, Partridge S, 2003. Malaria. Arguin PM, Navin AW, Kozarsky P, Cetron MS, eds. Health Information for International Travel 2003–2004. Atlanta: U.S. Department of Health and Human Service, CDC, 99–116.
  2. Warrell DA, 2002. Clinical features of malaria. Warrell DA, Gilles HM, eds. Essential Malariology. Fourth edition. New York: Edward Arnold, 191–205.
  3. Rohren EM, Turkington TG, Coleman RE, 2004. Clinical applications of PET in oncology. Radiology 231 : 305–332. [Google Scholar]
  4. Kumar A, Braum A, Schapiro M, Grady C, Carson R, Herscovitch P, 1992. Cerebral glucose metabolic rates after 30 and 45 minute acquisitions: a comparative study. J Nucl Med 33 : 2103–2105. [Google Scholar]
  5. Schwaiger M, Hicks R, 1991. The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 32 : 565–578. [Google Scholar]
  6. Sugawara Y, Zasadny KR, Kison PV, Baker LH, Wahl RL, 1999. Splenic fluorodeoxyglucose uptake increased by granulocyte colony-stimulating factor therapy: PET imaging results. J Nucl Med 40 : 1456–1462. [Google Scholar]
  7. Winter FD, Vogelaers D, Gemmel F, Dierckx RA, 2002. Promising role of 18-F-fluoro-D-deoxyglucose positron emission tomography in clinical infectious disease. Eur J Clin Microbiol Infect Dis 21 : 247–257. [Google Scholar]
  8. Kawabe J, Okamura T, Shakudo M, Koyama K, Wanibuchi H, Sakamoto H, Matsuda M, Kishimoto K, Ochi H, Yamada R, 1999. Two cases of chronic tonsillitis studied by FDG-PET. Ann Nucl Med 13 : 277–279. [Google Scholar]
  9. Bakheet SM, Powe J, Kandil A, Ezzat A, Rostom A, Amartey J, 2000. F-18 FDG uptake in breast infection and inflammation. Clin Nucl Med 25 : 100–103. [Google Scholar]
  10. Sugawara Y, Broun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL, 1998. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med 25 : 1238–1243. [Google Scholar]
  11. Kawai S, Aikawa M, Kano S, Suzuki M, 1993. A primate model for severe human malaria with cerebral involvement: Plasmodeum coatneyi-infected Macaca fuscata. Am J Trop Med Hyg 48 : 630–636. [Google Scholar]
  12. Matsumoto J, Kawai S, Terao K, Kirinoki M, Yasutomi Y, Aikawa M, Matsuda H, 2000. Malaria infection induces rapid elevation of the soluble Fas ligand level in serum and subsequent T lymphocytopenia: possible factors responsible for the differences in susceptibility of two species of Macaca monkeys to Plasmodium coatneyi infection. Infect Immun 68 : 1183–1188. [Google Scholar]
  13. Kawai S, Matsumoto J, Aikawa M, Matsuda H, 2003. Increased plasma levels of soluble intrecellilar adhesion molecule-1(sICAM-1) and soluble vascular cell molecule-1(sVCAM-1) associated with disease severity in a primate model for severe human malaria: Plasmodium coatneyi-infected Japanese macaques (Macaca fuscata). J Vet Med Sci 65 : 629–631. [Google Scholar]
  14. Sugiyama M, Ikeda E, Kawai S, Higuchi T, Zhang H, Khan N, Tomiyoshi K, Inoue T, Yamaguchi H, Katakura K, Endo K, Suzuki M, 2004. Cerebral metabolic reduction in severe malaria: Fluorodeoxyglucose-positoron emission tomography imaging in a primate model of severe human malaria with cerebral involvement. Am J Trop Med Hyg 71 : 542–545. [Google Scholar]
  15. Hamacher K, Coenen HH, Stocklin G, 1986. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27 : 235–238. [Google Scholar]
  16. Abbas AK, Lichtman AH, Pober JS, 2003. The major histocompatibility complex. Cellular and Molecular Immunology. Fifth edition. Philadelphia: Saunders, 65–80.
  17. Vajdy M, Veazey RS, Knight HK, Lackner AA, Neutra MR, 2000. Differential effects of simian immunodeficiency virus infection on immune inductive and effector sites in the rectal mucosa of rhesus macaques. Am J Pathol 161 : 969–978. [Google Scholar]
  18. Moog F, Bangerter M, Diederichs CG, Guhlmann A, Merkle E, Frickhofen N, Reske SN, 1998. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206 : 475–481. [Google Scholar]
  19. Lewis PJ, Salama A, 1994. Uptake of fluorine-18 fluorodeoxy-glucose in sarcoidosis. J Nucl Med 35 : 1647–1649. [Google Scholar]
  20. Engwerda CR, Beattie L, Amante FH, 2005. The importance of the spleen in malaria. Trends Parasitol 21 : 75–80. [Google Scholar]
  21. Warrell DA, Turner GD, Francis N, 2002. Pathology and pathophysiology of human malaria. Warrell DA, Gilles HM, eds. Essential Malariology. Fourth edition. New York: Edward Arnold, 191–205.
  22. Stevenson MM, Kraal G, 1989. Histological changes in the spleen and liver of C57BL/6 and A/J mice during Plasmodium chabaudi AS infection. Exp Molecul Pathol 51 : 80–95. [Google Scholar]
  23. Gartner LP, Hiatt JL, 2000. Spleen. Color Atlas of Histology. Third edition. Philadelphia: Lippincott Williams & Wilkins, 190–191.
  24. Scharko AM, Perlman SB, Hinds PW II, Hanson JM, Uno H, Pauza CD, 1996. Whole body positron emission tomography imaging of simian immunodeficiency virus-infected rhesus macaques. Proc Natl Acad Sci USA 93 : 6425–6430. [Google Scholar]
  25. Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, Sato N, Konishi J, 2002. Increased 18F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation. J Nucl Med 43 : 658–663. [Google Scholar]
  26. Shozushima M, Tsutsumi R, Terasaki K, Sato S, Nakamura R, Sakamaki K, 2003. Augmentation effects of lymphocyte activation by antigen-presenting macrophages on FDG uptake. Annal Nucl Med 17 : 555–560. [Google Scholar]
  27. Kato T, Fukatsu H, Ito K, Tadokoro M, Ota T, Ikeda M, Isomura T, Ito S, Nishino M, Ishigaki T, 1995. Fluorodeoxyglucose positron emission tomography in pancreatic cancer: an unresolved problem. Eur J Nucl Med 22 : 32–39. [Google Scholar]
  28. Wyler D, Gallin J, 1977. Spleen-derived mononuclear cell chemotactic factor in malaria infections: a possible mechanism for splenic macrophage accumulation. J Immunol 118 : 478–484. [Google Scholar]
  29. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N, 1995. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 36 : 1301–1306. [Google Scholar]
  30. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, Kudomi N, Shiomi M, Magata Y, Iida H, Saji H, 2004. 18F-FDG accumulation in atherosclerotic plaques: Immunohistochemical and PET imaging study. J Nucl Med 45 : 1245–1250. [Google Scholar]
  31. Zolg JW, MacLeod AJ, Scaife JG, 1984. The accumulation of lactic acid and its influence on the growth of Plasmodium falciparum in synchronized cultures. In Vitro 20 : 205–215. [Google Scholar]
  32. Sherman IW, 1988. Mechanisms of molecular trafficking in malaria. Parasitol 96 : S57–S81. [Google Scholar]
  33. Goodman J, Newman MI, Chapman WC, 2003. Splenic function. Greer JP, Foerster J, Lukens JN, Rodgers GM, Paraskevas F, Glader B, eds. Wintrobe’s Clinical Hematology. Vol. 2. Eleventh edition. Philadelphia: Lippincott Williams & Wilkins, 190–191.
  34. Kakinuma C, Futamura Y, Kaga N, Shibutani Y, 1999. Plasma cytokine concentrations and splenic changes in cynomolgus monkeys (Macaca fascicularis) with malaria. Lab Anim Sci 49 : 101–104. [Google Scholar]
  35. Abildgaad C, Harrison S, Denardo S, 1975. Simian Plasmodium knowlesi malaria: studies of coagulation and pathology. Am J Trop Med Hyg 24 : 764–768. [Google Scholar]
  36. Maegraith BG, 1973. Malaria. Spencer H, ed. Tropical Pathology. New York: Springer-Verlag, 319–349.
  37. Zingman BS, Viner BL, 1993. Splenic complications in malaria: case report and review. Clin Infect Dis 16 : 223–232. [Google Scholar]
  38. Helmby H, Jönsson G, Troye-Blomberg M, 2000. Cellular changes and apoptosis in the spleens and peripheral blood of mice infected with blood-stage Plasmodium chabaudi chabaudi AS. Infect Immun 68 : 1485–1490. [Google Scholar]
  39. Ohmae H, Kawamoto F, Ishii A, Leafasia J, Kere N, 1991. Detecting splenomegaly by ultrasound. Lancet 338 : 826–827. [Google Scholar]
  40. Oscherwitz SL, 2003. Chronic malaria with splenic rupture. J Travel Med 10 : 64–65. [Google Scholar]

Data & Media loading...

  • Received : 01 Jun 2004
  • Accepted : 12 Aug 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error