Volume 74, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Meiotic recombination generates allelic diversity in the merozoite surface protein 1 () gene. In this study, we monitored recombination-based diversity of in Guadalcanal, the Solomon Islands, where malaria transmission is high. We identified 5′ recombinant types, 3′ sequence types, and haplotypes (unique associations of 5′ recombinant types and 3′ sequence types), and compared them with those from areas of low transmission in Thailand and Vanuatu. The mean number of 5′ recombinant types per person (multiplicity) was lower in Guadalcanal than in Thailand. Guadalcanal populations had 6–8 haplotypes; the numbers are comparable to Vanuatu but much lower than in Thailand. There were marked geographic differences in distribution of haplo-types. Linkage disequilibrium in was stronger in Guadalcanal than in Thailand, suggesting limited recombination events in the Solomon Islands. We suggest that the frequency of recombination events in is determined not only by transmission intensity but by the number of alleles prevalent and multiplicity of infections.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Renia L, Ling IT, Marussig M, Miltgen F, Holder AA, Mazier D, 1997. Immunization with a recombinant C-terminal fragment of Plasmodium yoelii merozoite surface protein 1 protects mice against homologous but not heterologous P. yoelii sporozoite challenge. Infect Immun 65 : 4419–4423. [Google Scholar]
  2. Crewther PE, Matthew ML, Flegg RH, Anders RF, 1996. Protective immune responses to apical membrane antigen 1 of Plasmodium chabaudi involve recognition of strain-specific epitopes. Infect Immun 64 : 3310–3317. [Google Scholar]
  3. Healer J, Murphy V, Hodder AN, Masciantonio R, Gemmill AW, Anders RF, Cowman AF, Batchelor A, 2004. Allelic polymorphisms in apical membrane antigen-1 are responsible for evasion of antibody-mediated inhibition in Plasmodium falciparum. Mol Microbiol 52 : 159–168. [Google Scholar]
  4. Babiker HA, Lines J, Hill WG, Walliker D, 1997. Population structure of Plasmodium falciparum in villages with different malaria endemicity in east Africa. Am J Trop Med Hyg 56 : 141–147. [Google Scholar]
  5. Konate L, Zwetyenga J, Rogier C, Bischoff E, Fontenille D, Tall A, Spiegel A, Trape JF, Mercereau-Puijalon O, 1999. Variation of Plasmodium falciparum msp1 block 2 and msp2 allele prevalence and of infection complexicity in two neighbouring Senegalese villages with different transmission conditions. Trans R Soc Trop Med Hyg 93 : S1/21–S1/28. [Google Scholar]
  6. Färnert A, Rooth I, Svensson, Snounou G, Björkman A, 1999. Complexity of Plasmodium falciparum infections is consistent over time and protects against clinical disease in Tanzanian children. J Infect Dis 179 : 989–995. [Google Scholar]
  7. Holder AA, Blackman MJ, 1994. What is the function of MSP1 on the malaria merozoite. Parasitol Today 10 : 182–184. [Google Scholar]
  8. Tanabe K, Mackay M, Goman M, Scaife JG, 1987. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J Mol Biol 195 : 273–287. [Google Scholar]
  9. Miller LH, Roberts T, Shahabuddin M, McCutchan TF, 1993. Analysis of genetic diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol Biochem Parasitol 59 : 1–14. [Google Scholar]
  10. Conway DJ, Cavanagh DR, Tanabe K, Roper C, Mikes ZS, Sakihama N, Bojang KA, Oduola AM, Kremsner PG, Arnot DE, Greenwood BM, McBride JS, 2000. A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses. Nat Med 6 : 689–692. [Google Scholar]
  11. Chang SP, Gibson HL, Lee-Ng CT, Barr PJ, Hui GS, 1992. A carboxyl-terminal fragment of Plasmodium falciparum gp195 expressed by a recombinant baculovirus induces antibodies that completely inhibit parasite growth. J Immunol 149 : 548–555. [Google Scholar]
  12. Blackman MJ, Heidrich HG, Donachie S, McBride JS, Holder AA, 1990. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med 172 : 379–382. [Google Scholar]
  13. Kumar S, Yadava A, Keister DB, Tian JH, Ohl M, Perdue-Greenfield KA, Miller LH, Kaslow DC, 1995. Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys. Mol Med 1 : 325–333. [Google Scholar]
  14. Egan AF, Burghaus P, Druilhe P, Holder AA, Riley E, 1999. Human antibodies to the 19kDa C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 inhibit parasite growth in vitro. Parasite Immunol 21 : 133–139. [Google Scholar]
  15. Nwuba RI, Sodeinde O, Anumudu CI, Omosun YO, Odaibo AB, Holder AA, Nwagwu M, 2002. The human immune response to Plasmodium falciparum includes both antibodies that inhibit merozoite surface protein 1 secondary processing and blocking antibodies. Infect Immun 70 : 5328–5331. [Google Scholar]
  16. Kerr PJ, Ranford-Cartwright LC, Walliker D, 1994. Proof of intragenic recombination in Plasmodium falciparum. Mol Biochem Parasitol 66 : 241–248. [Google Scholar]
  17. Kaneko O, Kimura M, Kawamoto F, Ferreira MU, Tanabe K, 1997. Plasmodium falciparum: allelic variation in the merozoite surface protein 1 gene in wild isolates from southern Vietnam. Exp Parasitol 86 : 45–57. [Google Scholar]
  18. Sakihama N, Kimura M, Hirayama K, Kanda T, Na-Bangchang K, Jongwutiwes S, Conway D, Tanabe K, 1999. Allelic recombination and linkage disequilibrium within Msp1 of Plasmodium falciparum, the malignant human malaria parasite. Gene 230 : 47–54. [Google Scholar]
  19. Sakihama N, Kaneko A, Hattori T, Tanabe K, 2001. Limited recombination events in merozoite surface protein-1 alleles of Plasmodium falciparum on islands. Gene 279 : 41–48. [Google Scholar]
  20. Conway DJ, Roper C, Oduola AM, Arnot DE, Kremsner PG, Grobusch MP, Curtis CF, Greenwood BM, 1999. High recombination rate in natural populations of Plasmodium falciparum. Proc Natl Acad Sci U S A 96 : 4506–4511. [Google Scholar]
  21. Tanabe K, Sakihama N, Nakamura Y, Kaneko O, Kimura M, Ferreira MU, Hirayama K, 2000. Selection and genetic drift of polymorphisms within the merozoite surface protein-1 gene of Plasmodium falciparum. Gene 241 : 325–331. [Google Scholar]
  22. Da Silveira LA, Ribeiro WL, Kirchgatter K, Wunderlich G, Matsuoka H, Tanabe K, Ferreira MU, 2001. Sequence diversity and linkage disequilibrium within the merozoite surface protein-1 (msp-1) locus of Plasmodium falciparum: A longitudinal study in Brazil. J Eukaryot Microbiol 48 : 433–439. [Google Scholar]
  23. Mehlotra RK, Fujioka H, Roepe PD, Janneh O, Ursos LMB, Jacobs-Lorena V, McNamara DT, Bockarie MJ, Kazura JW, Kyle DE, Fidock DA, Zimmerman PA, 2001. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proc Natl Acad Sci USA 98 : 12689–12694. [Google Scholar]
  24. National Malaria Control Programme Annual Report, 1996. Honiara, Solomon Islands: Ministry of Health and Medical Services Government of Solomon Islands.
  25. Sakihama N, Mitamura T, Kaneko A, Horii T, Tanabe K, 2001. Long PCR amplification of Plasmodium falciparum DNA extracted from filter paper blots. Exp Parasitol 97 : 50–54. [Google Scholar]
  26. Sakihama N, Matsuo T, Mitamura T, Horii T, Kimura M, Kawabata M, Tanabe K, 2004. Relative frequencies of polymorphisms of variation in Block 2 repeats and 5′ recombinant types of Plasmodium falciparum msp1 alleles. Parasitol Int 53 : 59–67. [Google Scholar]
  27. Tanabe K, Sakihama N, Färnert A, Rooth I, Björkman A, Walliker D, Ranford-Cartwright L, 2002. In vitro recombination during PCR of Plasmodium falciparum DNA: a potential pitfall in molecular population genetic analysis. Mol Biochem Parasitol 122 : 211–216. [Google Scholar]
  28. Qari SH, Shi Y-P, Goldman IF, Nahlen BL, Tiberenc M, Lal AA, 1998. Predicted and ovserved alleles of Plasmodium falciparum merozoite surface protein-1 (MSP-1), a poteintial vaccine antigen. Mol Biochem Parasitol 92 : 241–252. [Google Scholar]
  29. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6 : 861–871. [Google Scholar]
  30. Nei M, 1987. Molecular Evolutionary Genetics. New York: Colombia University Press.
  31. Tanabe K, Sakihama N, Kaneko K, 2004. Stable SNPs in malaria antigen genes in isolated populations. Science 303 : 493. [Google Scholar]
  32. Snounou G, Zhu X, Siripoon N, Jarra W, Thaithong S, Brown KN, Viriyakosol S, 1999. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg 93 : 369–374. [Google Scholar]
  33. Levinson G, Gutman GA, 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4 : 203–221. [Google Scholar]
  34. Paul RE, Hackford I, Brockman A, Muller-Graf C, Price R, Luxemburger C, White NJ, Nosten F, Day KP, 1998. Transmission intensity and Plasmodium falciparum diversity on the northwestern border of Thailand. Am J Trop Med Hyg 58 : 195–203. [Google Scholar]
  35. Hii JLK, Kanai L, Foligela A, Kan SKP, Burkot TR, Wirtz RA, 1993. Impact of permethrin-impregnated mosquito nets compared with DDT-house-spraying against malaria transmission by Anopheles farauti and An. punctulatus in the Solomon Islands. Med Vet Entomol 7 : 333–338. [Google Scholar]
  36. Babiker HA, Ranford-Cartwright LC, Currie D, Charlwood JD, Billingsley P, Teuscher T, Walliker D, 1994. Random mating in a natural population of the malaria parasite Plasmodium falciparum. Parasitology 109 : 413–421. [Google Scholar]
  37. Bendixen M, Msangeni HA, Pedersen BV, Shayo D, Bodker R, 2001. Diversity of Plasmodium falciparum populations and complexity of infections in relation to transmission intensity and host age: a study from the Usambara Mountains, Tanzania. Trans R Soc Trop Med Hyg 95 : 143–148. [Google Scholar]
  38. Silva NS, Silveira LA, Machado RL, Povoa MM, Ferreira MU, 2000. Temporal and spatial distribution of the variants of merozoite surface protein-1 (MSP-1) in Plasmodium falciparum populations in Brazil. Ann Trop Med Parasitol 94 : 675–688. [Google Scholar]
  39. Eisen D, Billman-Jacobe H, Marshal VF, Fryauff D, Coppel RL, 1998. Temporal variation of the merozoite surface protein-2 gene of Plasmodium falciparum. Infect Immun 66 : 239–246. [Google Scholar]
  40. Babiker HA, Satti G, Walliker D, 1995. Genetic changes in the population of Plasmodium falciparum in a Sudanese village over a three-year period. Am J Trop Med Hyg 53 : 7–15. [Google Scholar]
  41. Issifou S, Ndjikou S, Sanni A, Lekoulou F, Ntoumi F, 2001. No influence of the transmission season on genetic diversity and complexity of infections in Plasmodium falciparum isolates from Benin. Afr J Med Sci suppl 30 : 17–20. [Google Scholar]
  42. Kaneko A, Taleo G, Kalkoa M, Yamar S, Kobayakawa T, Björkman A, 2000. Malaria eradication on islands. Lancet 356 : 1560–1564. [Google Scholar]

Data & Media loading...

  • Received : 14 Mar 2005
  • Accepted : 31 Aug 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error