Volume 74, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


We determined the baseline frequency distribution of mutant alleles of genes associated with resistance to chloroquine and sulfadoxine-pyrimethamine in isolates in Bangui, Central African Republic. Mutant alleles of the chloroquine resistance transporter () gene were found in all samples and the frequency of the deduced CIET haplotype was high (45%). The most common allele of the multidrug resistance 1 () gene among the field isolates of was 86Y (21.9%). The 1246Y allele was also common (18.0%). Of the 167 isolates in which the dihydrofolate reductase gene was studied, only 11 carried the wild-type allele (6.6%) whereas many (50.3%) were quadruple mutants (50R, 51I, 59R, 108N). The frequency of the 436A mutant allele of the dihydropteroate synthase gene was high (74.3%), but the frequencies of the 437G (18.6%) and 540E (5.2%) mutant alleles were low. Molecular analyses of antimalarial drug-resistant alleles of isolates in Bangui strongly suggest the widespread distribution of chloroquine and pyrimethamine resistance and to a lesser extent sulfadoxine resistance.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO/CDS/MAL, 2003. 2003 Africa Malaria Report. Geneva: World Health Organization.
  2. Pierce PF, Milhous WK, Campbell CC, 1987. Clinical and laboratory characterization of a chloroquine-resistant Plasmodium falciparum strain acquired in the Central African Republic. Am J Trop Med Hyg 36 : 1–2. [Google Scholar]
  3. Belec L, Delmont J, Vesters I, Testa J, Christian KS, Georges AJ, 1988. Emergence of multiresistant Plasmodium falciparum malaria in the Central African Republic. Presse Med 17 : 2090–2091. [Google Scholar]
  4. Menard D, Manirakiza A, Djalle D, Koula MR, Talarmin A, 2005. Efficacy of chloroquine, amodiaquine, sulfadoxine-pyrimethamine, chloroquine-sulfadoxine-pyrimethamine combination and amodiaquine-sulfadoxine-pyrimethamine combination in central African children with non-complicated malaria. Am J Trop Med Hyg 72 : 581–585. [Google Scholar]
  5. Menard D, Yapou F, Siadoua V, Sana S, Matsika-Claquin MD, Madji N, Talarmin A, 2005. Drug-resistant malaria in Bangui, Central African Republic: an in vitro assessment. Am J Trop Med Hyg 73 : 239–243. [Google Scholar]
  6. Wellems TE, Plowe CV, 2001. Chloroquine-resistant malaria. J Infect Dis 184 : 770–776. [Google Scholar]
  7. Cowman AF, 1998. The molecular basis of resistance to the sulfone, sulfonamides, and dihydrofolate reductase inhibitors. Sherman IW, ed. Malaria Parasite Biology, Pathogenesis, and Protection. Washington, DC: American Society for Microbiology Press, 317–330..
  8. Basco LK, Ringwald P, 1997. pfmdr1 gene mutation and clinical response to chloroquine in Yaounde, Cameroon. Trans R Soc Trop Med Hyg 91 : 210–211. [Google Scholar]
  9. Curtis J, Duraisingh MT, Warhurst DC, 1998. In vivo selection for a specific genotype of dihydropteroate synthetase of Plasmodium falciparum by pyrimethamine-sulfadoxine but not chlorproguanil-dapsone treatment. J Infect Dis 177 : 1429–1433. [Google Scholar]
  10. Gomez-Saladin E, Fryauff DJ, Taylor WR, Laksana BS, Susanti AI, Purnomo , Subianto B, Richie TL, 1999. Plasmodium fal-ciparum mdr1 mutations and in vivo chloroquine resistance in Indonesia. Am J Trop Med Hyg 61 : 240–244. [Google Scholar]
  11. Jelinek T, Kilian AH, Kabagambe G, von Sonnenburg F, 1999. Plasmodium falciparum resistance to sulfadoxine/pyri-methamine in Uganda: correlation with polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes. Am J Trop Med Hyg 61 : 463–466. [Google Scholar]
  12. Basco LK, Tahar R, Ringwald P, 1998. Molecular basis of in vivo resistance to sulfadoxine-pyrimethamine in African adult patients infected with Plasmodium falciparum malaria parasites. Antimicrob Agents Chemother 42 : 1811–1814. [Google Scholar]
  13. Nzila AM, Mberu EK, Sulo J, Dayo H, Winstanley PA, Sibley CH, Watkins WM, 2000. Towards an understanding of the mechanism of pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: genotyping of dihydrofolate reductase and dihydropteroate synthase of Kenyan parasites. Antimicrob Agents Chemother 44 : 991–996. [Google Scholar]
  14. Bwijo B, Kaneko A, Takechi M, Zungu IL, Moriyama Y, Lum JK, Tsukahara T, Mita T, Takahashi N, Bergqvist Y, Bjorkman A, Kobayakawa T, 2003. High prevalence of quintuple mutant dhps/dhfr genes in Plasmodium falciparum infections seven years after introduction of sulfadoxine and pyrimethamine as first line treatment in Malawi. Acta Trop 85 : 363–373. [Google Scholar]
  15. Wang P, Read M, Sims PF, Hyde JE, 1997. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol Microbiol 23 : 979–986. [Google Scholar]
  16. Nagesha HS, Din S, Casey GJ, Susanti AI, Fryauff DJ, Reeder JC, Cowman AF, 2001. Mutations in the pfmdr1, dhfr and dhps genes of Plasmodium falciparum are associated with in vivo drug resistance in West Papua, Indonesia. Trans R Soc Trop Med Hyg 95 : 43–49. [Google Scholar]
  17. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6 : 861–871. [Google Scholar]
  18. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344 : 257–263. [Google Scholar]
  19. UNICEF, 2001. Enquête à Indicateurs Multiples, MICS 2000. Editions B, ed. Rapport Final Bangui. Bangui: Ministère du Plan, RCA, 130–131.
  20. Basco LK, Ndounga M, Tejiokem M, Ngane VF, Youmba JC, Ringwald P, Soula G, 2002. Molecular epidemiology of malaria in Cameroon. XI. Geographic distribution of Plasmodium fal-ciparum isolates with dihydrofolate reductase gene mutations in southern and central Cameroon. Am J Trop Med Hyg 67 : 378–382. [Google Scholar]
  21. Ranford-Cartwright LC, Johnston KL, Abdel-Muhsin AM, Khan BK, Babiker HA, 2002. Critical comparison of molecular genotyping methods for detection of drug-resistant Plasmodium falciparum. Trans R Soc Trop Med Hyg 96 : 568–572. [Google Scholar]
  22. Basco LK, 2002. Molecular epidemiology of malaria in Cam-eroon. XIII. Analysis of pfcrt mutations and in vitro chloro-quine resistance. Am J Trop Med Hyg 67 : 388–391. [Google Scholar]
  23. Binder RK, Borrmann S, Adegnika AA, Missinou MA, Krem-sner PG, Kun JF, 2002. Polymorphisms in the parasite genes for pfcrt and pfmdr-1 as molecular markers for chloroquine resistance in Plasmodium falciparum in Lambaréné, Gabon. Parasitol Res 88 : 475–476. [Google Scholar]
  24. Wilson PE, Kazadi W, Kamwendo DD, Mwapasa V, Purfield A, Meshnick SR, 2005. Prevalence of pfcrt mutations in Congo-lese and Malawian Plasmodium falciparum isolates as determined by a new Taqman assay. Acta Trop 93 : 97–106. [Google Scholar]
  25. Anderson TJ, Nair S, Jacobzone C, Zavai A, Balkan S, 2003. Molecular assessment of drug resistance in Plasmodium falci-parum from Bahr El Gazal province, Sudan. Trop Med Int Health 8 : 1068–1073. [Google Scholar]
  26. Happi TC, Thomas SM, Gbotosho GO, Falade CO, Akinboye DO, Gerena L, Hudson T, Sowunmi A, Kyle DE, Milhous W, Wirth DF, Oduola AM, 2003. Point mutations in the pfcrt and pfmdr-1 genes of Plasmodium falciparum and clinical response to chloroquine, among malaria patients from Nigeria. Ann Trop Med Parasitol 97 : 439–451. [Google Scholar]
  27. Thomas SM, Ndir O, Dieng T, Mboup S, Wypij D, Maguire JH, Wirth DF. In vitro chloroquine susceptibility and PCR analysis of pfcrt and pfmdr1 polymorphisms in Plasmodium falciparum isolates from Senegal. Am J Trop Med Hyg 66 : 74–80 [Google Scholar]
  28. Kyosiimire-Lugemwa J, Nalunkuma-Kazibwe AJ, Mujuzi G, Mulindwa H, Talisuna A, Egwang TG, 2002. The Lys-76-Thr mutation in PfCRT and chloroquine resistance in Plasmodium falciparum isolates from Uganda. Trans R Soc Trop Med 96 : 91–95. [Google Scholar]
  29. Jelinek T, Aida AO, Peyerl-Hoffmann G, Jordan S, Mayor A, Heuschkel C, el Valy AO, von Sonnenburg F, Christophel EM, 2002. Diagnostic value of molecular markers in chloroquine-resistant falciparum malaria in southern Mauritania. Am J Trop Med Hyg. 67 : 449–453. [Google Scholar]
  30. Tinto H, Ouedraogo JB, Erhart A, Van Overmeir C, Dujardin JC, Van Marck E, Guiguemde TR, D’Alessandro U, 2003. Relationship between the pfcrt T76 and the pfmdr-1 Y86 mutations in Plasmodium falciparum and in vitro/in vivo chloro-quine resistance in Burkina Faso, west Africa. Infect Genet Evol 3 : 287–292. [Google Scholar]
  31. Sutherland CJ, Alloueche A, Curtis J, Drakeley CJ, Ord R, Du-raisingh M, Greenwood BM, Pinder M, Warhurst D, Targett GA, 2002. Gambian children successfully treated with chloro-quine can harbor and transmit Plasmodium falciparum game-tocytes carrying resistance genes. Am J Trop Med Hyg 67 : 578–585. [Google Scholar]
  32. Grobusch MP, Adagu IS, Kremsner PG, Warhurst DC, 1998. Plasmodium falciparum: in vitro chloroquine susceptibility and allele-specific PCR detection of pfmdr1 Asn86Tyr polymorphism in Lambarene, Gabon. Parasitology 116 : 211–217. [Google Scholar]
  33. Flueck TP, Jelinek T, Kilian AH, Adagu IS, Kabagambe G, Son-nenburg F, Warhurst DC, 2000. Correlation of in vivo resistance to chloroquine and allelic polymorphisms in Plasmodium falciparum isolates from Uganda. Trop Med Int Health 5 : 174– 178. [Google Scholar]
  34. Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF, 1990. Several alleles of the multidrugresis-tance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345 : 255–258. [Google Scholar]
  35. Zalis MG, Pang L, Silveira MS, Milhous WK, Wirth DF, 1998. Characterization of Plasmodium falciparum isolated from the Amazon region of Brazil: evidence for quinine resistance. Am J Trop Med Hyg 58 : 630–637. [Google Scholar]
  36. Aubouy A, Jafari S, Huart V, Migot-Nabias F, Mayombo J, Du-rand R, Bakary M, Le Bras J, Deloron P, 2003. DHFR and DHPS genotypes of Plasmodium falciparum isolates from Ga-bon correlate with in vitro activity of pyrimethamine and cy-cloguanil, but not with sulfadoxine-pyrimethamine treatment efficacy. J Antimicrob Chemother 52 : 43–49. [Google Scholar]
  37. Kublin JG, Dzinjalamala FK, Kamwendo DD, Malkin EM, Cor-tese JF, Martino LM, Mukadam RA, Rogerson SJ, Lescano AG, Molyneux ME, Winstanley PA, Chimpeni P, Taylor TE, Plowe CV, 2002. Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J Infect Dis 185 : 380–388. [Google Scholar]
  38. Alifrangis M, Enosse S, Khalil IF, Tarimo DS, Lemnge MM, Thompson R, Bygbjerg IC, Ronn AM, 2003. Prediction of Plasmodium falciparum resistance to sulfadoxine/pyri-methamine in vivo by mutations in the dihydrofolate reductase and dihydropteroate synthetase genes: a comparative study between sites of differing endemicity. Am J Trop Med Hyg 69 : 601–606. [Google Scholar]
  39. Hima-Lerible H, Menard D, Talarmin A, 2003. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in Bangui, Central African Republic. J Antimicrob Chemother 51 : 192–194. [Google Scholar]
  40. Matsika-Claquin MD, Massanga M, Menard D, Mazi-Nzapako J, Tenegbia JP, Mandeng MJ, Willybiro-Sacko J, Fontanet A, Talarmin A, 2004. HIV epidemic in Central African Republic: high prevalence rates in both rural and urban areas. J Med Virol 72 : 358–362. [Google Scholar]

Data & Media loading...

  • Received : 21 May 2005
  • Accepted : 22 Sep 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error