Volume 74, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Using a recently described hamster model of yellow fever (YF), we compared the hematologic and clinical chemistry changes that occur in blood with the histopathologic alternations observed in liver and other organs. Inflammatory foci and necroapoptotic hepatocytes were first observed in the liver three days after YF infection. This was accompanied by a rapid increase in serum transaminase and bilirubin values, elevation of prothrombin times, thrombocytopenia, and leukocytosis. Maximum liver pathology was observed on the sixth and seventh days post-infection; this corresponded to the peak alternations in clinical chemistry and hematologic values. In surviving hamsters, regenerating hepatocytes began to appear on the eighth day post-infection; this was accompanied by a corresponding return to baseline levels of most of the aforementioned clinical laboratory values. The histopathologic and clinical laboratory findings in the hamster model were very similar to those observed in severe human cases of YF. These results provide further validation of the utility of the hamster model for studying the pathogenesis and treatment of YF.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Monath TP, 2004. Yellow fever vaccine. Plotkin SA, Orenstein WA, eds. Vaccines. Fourth edution. Philadelphia: W. B. Saunders, 1095–1176.
  2. World Health Organization, 1998. Distinct Guidelines for Yellow Fever Surveillance. Publication No. (WHO/EPI/GEN) 98.09. Geneva: World Health Organization. Available from http://www.who.int/emc-documents/yellow_fever/whoepigen9809c.html
  3. Barwick RS, Marfin AA, Cetron MS, 2004. Yellow fever vaccine-associated disease. Scheld WM, Murray BE, Hughes JH, eds. Emerging Infections 6. Washington, DC: American Society for Microbiology Press, 25–34.
  4. Tesh RB, Guzman H, Travassos da Rosa APA, Vasconcelos PFC, Dias LB, Bunnell JE, Zhang H, Xiao SY, 2001. Experimental yellow fever virus infection in the golden hamster (Mesocricetus auratus). I. Virologic, biochemical, and immunologic studies. J Infect Dis 183 : 1431–1436.
    [Google Scholar]
  5. Xiao SY, Zhang H, Guzman H, Tesh RB, 2001. Experimental yellow fever virus infection in the golden hamster (Mesocricetus auratus). II. Pathology. J Infect Dis 183 : 1437–1444.
    [Google Scholar]
  6. Xiao SY, Guzman H, Travassos da Rosa APA, Zhu HB, Tesh RB, 2003. Alteration of clinical outcome and histopathology of yellow fever virus infection in a hamster model by previous infection with heterologous flaviviruses. Am J Trop Med Hyg 68 : 695–703.
    [Google Scholar]
  7. Sbrana E, Xiao SY, Guzman H, Ye M, Travassos da Rosa APA, Tesh RB, 2004. Efficacy of post-exposure treatment of yellow fever with ribavirin in a hamster model of the disease. Am J Trop Med Hyg 71 : 306–312.
    [Google Scholar]
  8. McArthur MA, Suderman MT, Mutebi JP, Xiao SY, Barrett ADT, 2003. Molecular characterization of a hamster-viscerotropic strain of yellow fever virus. J Virol 77 : 1462–1468.
    [Google Scholar]
  9. McArthur MA, Xiao SY, Barrett ADT, 2005. Phenotypic and molecular characterization of non-lethal, hamster-viscerotropic strain of yellow fever virus. Virus Res 110 : 65–71.
    [Google Scholar]
  10. Kerr JA, 1951. The clinical aspects and diagnosis of yellow fever. Strode GK, ed. Yellow Fever. New York: McGraw-Hill Book Company, 385–425.
  11. Elton NW, Romero A, Trejos A, 1955. Clinical pathology of yellow fever. Am J Clin Pathol 25 : 135–146.
    [Google Scholar]
  12. Monath TP, Brinker KR, Chandler FW, Kemp GE, Crupp CB, 1981. Pathophysiologic correlations in a rhesus monkey model of yellow fever. Am J Trop Med Hyg 30 : 431–443.
    [Google Scholar]
  13. del Rio C, Meier FA, 1998. Yellow fever. Nelson AM, Horsburgh CR, eds. Pathology of Emerging Infections 2. Washington, DC: American Society for Microbiology Press, 13–39.
  14. Oudart JL, Rey M, 1979. Proteinurie proteinemie et transaminasemies dans 23 cas de fievre jaune confirmee. Bull Wordl Health Organ 42 : 95–102.
    [Google Scholar]
  15. Quaresma JAS, Barros VLRS, Fernandes ER, Pagliari C, Takakura C, Vasconcelos PFC, Andrade HF Jr, Duarte MIS, 2005. Reconsideration of histopathology and ultrastructural aspects of the human liver in yellow fever. Acta Trop 94 : 116–127.
    [Google Scholar]
  16. Quaresma JA, Barros VL, Pagliari C, Fernandes ER, Guedes F, Takakura CF, Andrade HF Jr, Vasconcelos PF, Duarte MI, 2006. Revisiting the liver in human yellow fever: virus-induced apoptosis in hepatocytes associated with TGF-β, TNF-α and NK cells activity. Virology 345 : 22–30.
    [Google Scholar]
  17. Quaresma JA, Barros VL, Fernandes ER, Pagliari C, Guedes F, Vasconcelos PF, Andrade HF Jr, Duarte MI, 2005. Immuno-histochemical examination of the role of Fas ligand and lymphocytes in the pathogenesis of human liver yellow fever. Virus Res 116 : 91–97.
    [Google Scholar]
  18. Schafer AI, 2004. Approach to the patient with bleeding and thrombosis. Goldman L, Ausiello D, eds. Cecil Textbook of Medicine. 22nd edition. Philadelphia: W. B. Saunders, 975–979.

Data & Media loading...

  • Received : 23 Nov 2005
  • Accepted : 23 Jan 2006
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error