Volume 73, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The population genetic structure of the African malaria vector from western Kenya, the Great Rift Valley, and coastal Kenya was investigated using 12 microsatellite loci and a partial sequence of mtDNA dehydrogenase gene subunit 5 (ND5). The mean number of alleles and the observed heterozygosity were similar for the mosquito populations from the three regions as revealed by the microsatellite data. A total of 30 polymorphic sites in the ND5 gene defined 39 haplotypes. Six haplotypes were shared among four populations from the three distinct ecological conditions, and they constituted 92% of the total number of individuals sequenced. Mitochondrial haplotype and nucleotide diversity were high. Microsatellite markers within polymorphic inversions revealed a level of genetic differentiation (F = 0.116) four to seven times higher than markers outside inversions (F = 0.016) or inside fixed inversions (F = 0.027). Mitochondrial ND5 gene sequences did not reveal significant genetic differentiation for the same four populations (Φ = −0.008). The contrasts in the level of genetic differentiation between microsatellite markers inside polymorphic inversions, the mitochondrial ND5 gene, and microsatellite markers outside inversions suggest that the level of genetic differentiation in populations across the Great Rift Valley varies significantly among different areas of the genome. Variations in the degree of genetic differentiation with respect to the chromosomal location of microsatellite markers may result from intrinsic characteristics of the markers, demographic or historic factors affecting these populations, and the possible adaptive significance of chromosomal inversions to climatic conditions.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR, 2002. Epidemiology of drug-resistant malaria. Lancet Infect Dis 2 : 209–218. [Google Scholar]
  2. Hemingway J, Field L, Vontas J, 2002. An overview of insecticide resistance. Science 298 : 96–97. [Google Scholar]
  3. Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M, James AA, Kafatos FC, Mukwaya LG, Paton M, Powell JR, Schneider W, Scott TW, Sina B, Sinden R, Sinkins S, Spielman A, Toure Y, Collins FH, 2002. Malaria control with genetically manipulated insect vectors. Science 298 : 119–121. [Google Scholar]
  4. Lehmann T, Hawley WA, Grebert H, Danga M, Atieli F, Collins FH, 1999. The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J Hered 90 : 613–621. [Google Scholar]
  5. Lehmann T, Blackston CR, Besansky NJ, Escalante AA, Collins FH, Hawley WA, 2000. The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya: the mtDNA perspective. J Hered 91 : 165–168. [Google Scholar]
  6. Kamau L, Mukabana WR, Hawley WA, Lehmann T, Irungu LW, Orago AA, Collins FH, 1999. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol Biol 8 : 287–297. [Google Scholar]
  7. Petrarca V, Nugud AD, Ahmed MA, Haridi AM, Di Deco MA, Coluzzi M, 2000. Cytogenetics of the Anopheles gambiae complex in Sudan, with special reference to An. arabiensis: relationships with East and West African populations. Med Vet Entomol 14 : 149–164. [Google Scholar]
  8. Minakawa N, Sonye G, Mogi M, Githeko A, Yan G, 2002. The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya. J Med Entomol 39 : 833–841. [Google Scholar]
  9. Donnelly MJ, Cuamba N, Charlwood JD, Collins FH, Townson H, 1999. Population structure in the malaria vector, Anopheles arabiensis patton, in East Africa. Heredity 83 : 408–417. [Google Scholar]
  10. Donnelly MJ, Townson H, 2000. Evidence for extensive genetic differentiation among populations of the malaria vector Anopheles arabiensis in Eastern Africa. Insect Mol Biol 9 : 357–367. [Google Scholar]
  11. Coluzzi M, Sabatini A, Petrarca V, Di Deco MA, 1979. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73 : 483–497. [Google Scholar]
  12. Corbett JD, Collis SN, Bush BR, Jeske RQ, Martinez RE, Zermoglio MF, Lu Q, Burton R, Muchugu EI, White JW, Hodson DP, 2001. Almanac Characterization Tool. A resource base for characterizing the agricultural, natural, and human environments for select African countries. Texas Agricultural Experiment Station, Texas A&M University System, Blackland Research and Extension Center Report No. 01-08. Documentation and CD-ROM.
  13. World Health Organization, Division of Malaria and Other Parasitic Diseases, 1975. Manual on Practical Entomology in Malaria. Geneva: World Health Organization.
  14. Gillies MT, Coetzee M, 1987. Supplement to the Anophelinae of Africa South of the Sahara. Johannesburg: South African Institute for Medical Research.
  15. Scott JA, Brogdon WG, Collins FH, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49 : 520–529. [Google Scholar]
  16. Lehmann T, Hawley WA, Collins FH, 1996. An evaluation of evolutionary constraints on microsatellite loci using null alleles. Genetics 144 : 1155–1163. [Google Scholar]
  17. Oetting WS, Armstrong CM, Ronan SM, Young TL, Sellers TA, King RA, 1998. Multiplexed short tandem repeat polymorphisms of the Weber 8A set of markers using tailed primers and infrared fluorescence detection. Electrophoresis 19 : 3079–3083. [Google Scholar]
  18. Beard CB, Hamm DM, Collins FH, 1993. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol 2 : 103–124. [Google Scholar]
  19. Besansky NJ, Lehmann T, Fahey GT, Fontenille D, Braack LE, Hawley WA, Collins FH, 1997. Patterns of mitochondrial variation within and between African malaria vectors, Anopheles gambiae and An. arabiensis, suggest extensive gene flow. Genetics 147 : 1817–1828. [Google Scholar]
  20. Raymond M, Rousset F, 1995. GENEPOP version 3.0: A population genetics software for exact tests and ecumenicism. Journal of Heredity 86 : 248–249. [Google Scholar]
  21. Weir BS, 1990. Genetic Data Analysis. Sunderland, MA: Sinauer Associates, Inc.
  22. Wright S, 1978. Evolution and the Genetics of Populations, Variability Among and Within Populations. Chicago: University of Chicago Press.
  23. Slatkin M, 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139 : 457–462. [Google Scholar]
  24. Perez-Lezaun A, Calafell F, Mateu E, Comas D, Ruiz-Pacheco R, Bertranpetit J, 1997. Microsatellite variation and the differentiation of modern humans. Hum Genet 99 : 1–7. [Google Scholar]
  25. Wang R, Zheng L, Toure YT, Dandekar T, Kafatos FC, 2001. When genetic distance matters: measuring genetic differentiation at microsatellite loci in whole-genome scans of recent and incipient mosquito species. Proc Natl Acad Sci USA 98 : 10769–10774. [Google Scholar]
  26. Goudet J, 1995. FSTAT (Version 1.2): A computer software to calculate F-statistics. Journal of Heredity 86 : 485–486. [Google Scholar]
  27. Hall TA, 1999. BioEdit: A user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–8. [Google Scholar]
  28. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 : 2496–2497. [Google Scholar]
  29. Tajima F, 1989. The effect of change in population size on DNA polymorphism. Genetics 123 : 597–601. [Google Scholar]
  30. Fu YX, Li WH, 1993. Statistical tests of neutrality of mutations. Genetics 133 : 693–709. [Google Scholar]
  31. Kimura M, 1983. The Neutral Theory of Molecular Evolution. Cambridge, MA: Cambridge University Press.
  32. Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 : 585–595. [Google Scholar]
  33. Laayouni H, Hasson E, Santos M, Fontdevila A, 2003. The evolutionary history of Drosophila buzzatii. XXXV. Inversion polymorphism and nucleotide variability in different regions of the second chromosome. Mol Biol Evol 20 : 931–944. [Google Scholar]
  34. Schneider S, Roessli D, Excoffier L, 2000. A software for population genetics data analysis. Geneva: Genetics and Biometry Laboratory, University of Geneva.
  35. Hahn MW, Rausher MD, Cunningham CW, 2002. Distinguishing between selection and population expansion in an experimental lineage of bacteriophage T7. Genetics 161 : 11–20. [Google Scholar]
  36. Lanzaro GC, Toure YT, Carnahan J, Zheng L, Dolo G, Traore S, Petrarca V, Vernick KD, Taylor CE, 1998. Complexities in the genetic structure of Anopheles gambiae populations in West Africa as revealed by microsatellite DNA analysis. Proc Natl Acad Sci USA 95 : 14260–14265. [Google Scholar]
  37. Nigatu W, Curtis CF, Lulu M, 1995. Test for association of DDT resistance with inversion polymorphism in Anopheles arabiensis from Ethiopia. J Am Mosq Control Assoc 11 : 238–240. [Google Scholar]
  38. Mnzava AE, Rwegoshora RT, Wilkes TJ, Tanner M, Curtis CF, 1995. Anopheles arabiensis and An. gambiae chromosomal inversion polymorphism, feeding and resting behaviour in relation to insecticide house-spraying in Tanzania. Med Vet Entomol 9 : 316–324. [Google Scholar]
  39. della Torre A, Merzagora L, Powell JR, Coluzzi M, 1997. Selective introgression of paracentric inversions between two sibling species of the Anopheles gambiae complex. Genetics 146 : 239–244. [Google Scholar]
  40. Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V, 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298 : 1415–1418. [Google Scholar]
  41. Donnelly MJ, Licht MC, Lehmann T, 2001. Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol Biol Evol 18 : 1353–1364. [Google Scholar]
  42. Simard F, Fontenille D, Lehmann T, Girod R, Brutus L, Gopaul R, Dournon C, Collins FH, 1999. High amounts of genetic differentiation between populations of the malaria vector Anopheles arabiensis from West Africa and eastern outer islands. Am J Trop Med Hyg 60 : 1000–1009. [Google Scholar]
  43. Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC, 1996. An integrated genetic map of the African human malaria vector Mosquito, Anopheles gambiae. Genetics 143 : 941–952. [Google Scholar]
  44. Coluzzi M, Sabatini A, 1967. Cytogenetic observation on species A and B of the Anopheles gambiae complex. Parassitologia 9 : 73–88. [Google Scholar]

Data & Media loading...

  • Received : 26 Apr 2004
  • Accepted : 03 Jun 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error