1921
Volume 73, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Larval control of mosquitoes has long been neglected in tropical Africa due to uncertainties about its impacts on incidence and prevalence of malaria. Population models of mosquitoes are a useful tool to provide qualitative and quantitative understandings of influences of larval interventions on malaria transmission. For these purposes, we develop a new modeling framework by conceiving a quantity of the total productivity in an area, which, in turn, can be partitioned into its constituent parts from individual habitats. Three scenarios of larval interventions were evaluated in relation to impacts on parasitological indicators of malaria transmission. Our results show that it is unnecessary to manage all aquatic habitats to obtain significant reductions in incidence and prevalence of malaria in situations of low and intermediate levels of transmission. We highlight that informed larval interventions featured by identifying and targeting prolific habitats can play a critical role in combating malaria in Africa.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2005.73.546
2005-09-01
2019-04-24
Loading full text...

Full text loading...

/deliver/fulltext/14761645/73/3/0730546.html?itemId=/content/journals/10.4269/ajtmh.2005.73.546&mimeType=html&fmt=ahah

References

  1. Breman JG, Alilio MS, Mills A, 2004. Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg 71 (Suppl 2): 1–15. [Google Scholar]
  2. Shiff C, 2002. Integrated approach to malaria control. Clin Microbiol Rev 15 : 278–293. [Google Scholar]
  3. Novak R, Lampman RL, 2001. Public health pesticides. Krieger R, Doull J, Ecobichon D, Gammon D, Hodgson E, Reiter L, Ross J, eds. Handbooks of Pesticide Toxicology, Principles. San Diego, Academic Press, 181–202.
  4. Utzinger J, Tanner M, Kammen DM, Killeen GF, Singer BH, 2002. Integrated programme is key to malaria control. Nature 419 : 431. [Google Scholar]
  5. Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BG, 2002. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis 2 : 618–627. [Google Scholar]
  6. Simmons JS, 1939. Malaria in Panama. Baltimore: Johns Hopkins University Press.
  7. Harrison G, 1978. Mosquitoes, Malaria, and Man: A History of the Hostilities Since 1880. New York: Dutton.
  8. Kitron U, Spielman A, 1989. Suppression of transmission of malaria through source reduction: antianopheline measures applied in Israel, the United States, and Italy. Rev Infect Dis 11 : 391–406. [Google Scholar]
  9. Killeen GF, Fillinger U, Knols BG, 2002. Advantages of larval control for African malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malar J 1 : 8. [Google Scholar]
  10. Mittal PK, 2003. Biolarvicides in vector control: challenges and prospects. J Vector Borne Dis 40 : 20–32. [Google Scholar]
  11. Bøgh C, Clarke SE, Jawara M, Thomas CJ, Lindsay SW, 2003. Localized breeding of the Anopheles gambiae complex along the River Gambia, West Africa. Bull Entomol Res 93 : 279–287. [Google Scholar]
  12. Shililu J, Ghebremeskel T, Seulu F, Mengistu S, Fekadu H, Zerom M, Ghebregziabiher A, Sintasath D, Bretas G, Mbogo C, Githure J, Brantly E, Novak R, Beier JC, 2003. Larval habitat diversity and ecology of anopheline larvae in Eritrea. J Med Entomol 40 : 921–929. [Google Scholar]
  13. Bond JG, Rojas JC, Arredondo-Jimenez JI, Quiroz-Martinez H, Valle J, Williams T, 2004. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation. Proc R Soc Lond B Biol Sci 271 : 2161–2169. [Google Scholar]
  14. Carlson JC, Byrd BD, Omlin FX, 2004. Field assessments in western Kenya link malaria vectors to environmentally disturbed habitats during the dry season. BMC Public Hlth 4 : 33. [Google Scholar]
  15. Caldas de Castro M, Yamagata Y, Mtasiwa D, Tanner M, Utzinger J, Keiser J, Singer BH, 2004. Integrated urban malaria control: a case study in Dar es Salaam, Tanzania. Am J Trop Med Hyg 71 (Suppl 2): 103–117. [Google Scholar]
  16. Keating J, Macintyre K, Mbogo CM, Githure JI, Beier JC, 2004. Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya. Int J Health Geogr 3 : 9. [Google Scholar]
  17. Koenraadt CJ, Githeko AK, Takken W, 2004. The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae s.s. and Anopheles arabiensis in a Kenyan village. Acta Trop 90 : 141–153. [Google Scholar]
  18. Minakawa N, Sonye G, Mogi M, Yan G, 2004. Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol 18 : 301–305. [Google Scholar]
  19. WHO, 2004. Malaria Epidemics: Forecasting, Prevention, Early Detection and Control: From policy to practice Report of an Informal Consultation, Leysin, Switzerland, 8-10122003 WHO/CDS/MAL/2004.1098. World Health Organization, Geneva.
  20. McKenzie FE, Baird JK, Beier JC, Lal AA, Bossert WH, 2002. A biologic basis for integrated malaria control. Am J Trop Med Hyg 67 : 571–577. [Google Scholar]
  21. Gu W, 1994. 1994. TriDyn: A simulation model of the dynamics of Culex tritaeniorhynchus populations. Jap J Sanit Zool 45 : 319–326. [Google Scholar]
  22. Eisenberg JN, Reisen WK, Spear RC, 1995. Dynamic model comparing the bionomics of two isolated Culex tarsalis (Diptera: Culicidae) populations: model development. J Med Entomol 32 : 83–97. [Google Scholar]
  23. Gu W, Killeen G, Mbogo CM, Githure JI, Regens JL, Beier JC, 2003. An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya. Trans Roy Soc Trop Med Hyg 97 : 1–8. [Google Scholar]
  24. Depinay JM, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, Dushoff J, Billingsley P, Mwambi H, Githure J, Toure AM, McKenzie FE, 2004. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 3 : 29. [Google Scholar]
  25. Hoshen MB, Morse AP, 2004. A weather-driven model of malaria transmission. Malar J 3 : 32. [Google Scholar]
  26. Killeen GF, Seyoum A, Knols BG, 2004. Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg 71 : 87–93. [Google Scholar]
  27. Fillinger U, Sonye G, Killeen GF, Knols BG, Becker N, 2004. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health 9 : 1274–1289. [Google Scholar]
  28. Sattler MA, Mtasiwa D, Kiama M, Premji Z, Tanner M, Killeen GF, Lengeler C, 2005. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malaria Journal 4 : 4. [Google Scholar]
  29. Carter R, Mendis KN, Roberts D, 2000. Spatial targeting of interventions against malaria. Bull Wld Hlth Org. 78 : 1401–1411. [Google Scholar]
  30. Najera JA, 1999. Malaria control: Achievements, problems, strategies. WHO/CDS/RBM/99.10. World Health Organization, Geneva.
  31. Beier JC, Killeen GF, Githure JI, 1999. Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg 61 : 109–113. [Google Scholar]
  32. Trape JF, Rogier C, 1999. Combating malaria morbidity and mortality by reducing transmission. Parasitol Today 12 : 236–240. [Google Scholar]
  33. Snow RW, Trape JF, Marsh K, 2001. The past, present and future of childhood malaria mortality in Africa. Trends Parasitol. 17 : 593–597. [Google Scholar]
  34. Trape JF, Pison G, Spiegel A, Enel C, Rogier C, 2002. Combating malaria morbidity and mortality by reducing transmission. Parasitol Today 12 : 236–240. [Google Scholar]
  35. Gu W, Mbogo CM, Githure JI, Regens JL, Killeen GF, Swalm CM, Yan G, Beier JC, 2003. Low recovery rates stabilizing malaria in low transmission areas in the coast of Kenya. Acta Tropica 86 : 71–81. [Google Scholar]
  36. Hay SI, Rogers DJ, Toomer JF, Snow RW, 1999. Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, Internet access and review. Trans R Soc Trop Med Hyg 94 : 113–127. [Google Scholar]
  37. Baird JK, 1995. Host Age as a determinant of naturally acquired immunity to Plasmodium falciparum. Parasitol Today 11 : 105–111. [Google Scholar]
  38. Struik SS, Riley EM, 2004. Does malaria suffer from lack of memory? Immunol Rev 201 : 268–290. [Google Scholar]
  39. Pull JH, Grab B, 1974. A simple epidemiological model for evaluating the malaria inoculation rate and the risk of infection in infants. Bull Wld Hlth Org 51 : 507–516. [Google Scholar]
  40. Gazin P, Robert V, Cot M, Carnevale P, 1988. Plasmodium falciparum incidence and patency in a high seasonal transmission area of Burkina Faso. Trans R Soc Trop Med Hyg 82 : 50–55. [Google Scholar]
  41. Beier JC, Oster CN, Onyango FK, Bales JD, Sherwood JA, Perkins PV, Chumo DK, Koech DV, Whitmire RE, Roberts CR, Diggs CL, Hoffman SL, 1994. Plasmodium falciparum incidence relative to entomologic inoculation rates at a site proposed for testing malaria vaccines in western Kenya. Am J Trop Med Hyg 50 : 529–536. [Google Scholar]
  42. MacDonald G, 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.
  43. Smith DL, McKenzie FE, 2004. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 3 : 13. [Google Scholar]
  44. Smith DL, Dushoff J, McKenzie FE, 2004. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2 : 1957–1964. e368. [Google Scholar]
  45. Sama W, Killeen G, Smith T, 2004. Estimating the duration of Plasmodium falciparum infection from trials of indoor residual spraying. Am J Trop Med Hyg 70 : 625–634. [Google Scholar]
  46. Over M, Bakote’e B, Velayudhan R, Wilikai P, Graves PM, 2004. Impregnated nets or DDT residual spraying? Field effectiveness of malaria prevention techniques in Solomon islands, 1993–1999. Am J Trop Med Hyg 71 (Suppl 2): 214–223. [Google Scholar]
  47. Schneider P, Takken W, McCall PJ, 2000. Interspecific competition between sibling species larvae of Anopheles arabiensis and An. Gambiae. Med Vet Entomol 14 : 165–170. [Google Scholar]
  48. Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED, 2002. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 39 : 162–172. [Google Scholar]
  49. Service MW, 1971. Studies on sampling larval populations of the Anopheles gambiae complex. Bull World Health Organ 45 : 169–180. [Google Scholar]
  50. Service MW, 1977. Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying. J Med Entomol 13 : 535–545. [Google Scholar]
  51. Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JL, Ndhlovu PD, Quinnell RJ, Watts CH, Chandiwana SK, Anderson RM, 1997. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA 94 : 338–342. [Google Scholar]
  52. CDC, 2001. Epidemic/epizootic West Nile Virus in the United States: Revised guidelines for surveillance, prevention, and control Available at http://wwwcdcgov/ncidod/dvbid/westnile/resources/wnv-guidelines-aug-2003pdf
  53. White DJ, 2001. Vector surveillance for West Nile virus. Ann N Y Acad Sci 951 : 74–83. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2005.73.546
Loading
/content/journals/10.4269/ajtmh.2005.73.546
Loading

Data & Media loading...

  • Received : 16 Mar 2005
  • Accepted : 19 Apr 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error