Volume 73, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Lymphatic filariasis (LF) is a debilitating disease overwhelmingly caused by , which is transmitted by various mosquito species. Here, we present a systematic literature review with the following objectives: (i) to establish global and regional estimates of populations at risk of LF with particular consideration of water resource development projects, and (ii) to assess the effects of water resource development and management on the frequency and transmission dynamics of the disease. We estimate that globally, 2 billion people are at risk of LF. Among them, there are 394.5 million urban dwellers without access to improved sanitation and 213 million rural dwellers living in close proximity to irrigation. Environmental changes due to water resource development and management consistently led to a shift in vector species composition and generally to a strong proliferation of vector populations. For example, in World Health Organization (WHO) subregions 1 and 2, mosquito densities of the complex and were up to 25-fold higher in irrigated areas when compared with irrigation-free sites. Although the infection prevalence of LF often increased after the implementation of a water project, there was no clear association with clinical symptoms. Concluding, there is a need to assess and quantify changes of LF transmission parameters and clinical manifestations over the entire course of water resource developments. Where resources allow, integrated vector management should complement mass drug administration, and broad-based monitoring and surveillance of the disease should become an integral part of large-scale waste management and sanitation programs, whose basic rationale lies in a systemic approach to city, district, and regional level health services and disease prevention.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO, 2001. Lymphatic filariasis. Wkly Epidemiol Rec 76 : 149–154. [Google Scholar]
  2. Zagaria N, Savioli L, 2002. Elimination of lymphatic filariasis: a public-health challenge. Ann Trop Med Parasitol 96 (Suppl. 2): S3–S13. [Google Scholar]
  3. Molyneux D, 2003. Lymphatic filariasis (elephantiasis) elimination: a public health success and development opportunity. Filaria J 2 : 13. [Google Scholar]
  4. Langhammer J, Birk HW, Zahner H, 1997. Renal disease in lymphatic filariasis: evidence for tubular and glomerular disorders at various stages of the infection. Trop Med Int Health 2 : 875–884. [Google Scholar]
  5. Ottesen EA, Duke BO, Karam M, Behbehani K, 1997. Strategies and tools for the control/elimination of lymphatic filariasis. Bull World Health Organ 75 : 491–503. [Google Scholar]
  6. Dreyer G, Figueredo-Silva J, Neafie RC, Addiss DG, 1998. Lymphatic filariasis. Nelson AM, Horsburgh CR, eds. Pathology of Emerging Infections.. Volume 2. Washington DC: American Society for Microbiology, 317–342.
  7. Dreyer G, Noroes J, Addiss D, 1997. The silent burden of sexual disability associated with lymphatic filariasis. Acta Trop 63 : 57–60. [Google Scholar]
  8. Ramaiah KD, Das PK, Michael E, Guyatt H, 2000. The economic burden of lymphatic filariasis in India. Parasitol Today 16 : 251–253. [Google Scholar]
  9. WHO, 2004. The World Health Report 2004 – Changing History. Geneva: World Health Organization.
  10. International Task Force for Disease Eradication, 1993. Recommendations of the International Task Force for Disease Eradication. MMWR Recomm Rep 42 : 1–38. [Google Scholar]
  11. Molyneux DH, Bradley M, Hoerauf A, Kyelem D, Taylor MJ, 2003. Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends Parasitol 19 : 516–522. [Google Scholar]
  12. Ottesen EA, 2000. The global programme to eliminate lymphatic filariasis. Trop Med Int Health 5 : 591–594. [Google Scholar]
  13. WHO, 2000. Preparing and Implementing a National Plan to Eliminate Lymphatic Filariasis: A Guideline for Programme Managers. A guideline for programme managers. Geneva: World Health Organization (WHO/CDS/CPE/CEE/2000.16).
  14. WHO, 2004. Report on the mid-term assessment of microfilaraemia reduction in sentinel sites of 13 countries of the Global Programme to Eliminate Lymphatic Filariasis. Wkly Epidemiol Rec 79 : 358–365. [Google Scholar]
  15. Michael E, Malecela-Lazaro MN, Simonsen PE, Pedersen EM, Barker G, Kumar A, Kazura JW, 2004. Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis 4 : 223–234. [Google Scholar]
  16. Harb M, Faris R, Gad AM, Hafez ON, Ramzy R, Buck AA, 1993. The resurgence of lymphatic filariasis in the Nile delta. Bull World Health Organ 71 : 49–54. [Google Scholar]
  17. Manga L, 2002. Vector-control synergies, between ‘Roll Back Malaria’ and the Global Programme to Eliminate Lymphatic Filariasis, in the African region. Ann Trop Med Parasitol 96 (Suppl. 2): S129–S132. [Google Scholar]
  18. Prasittisuk C, 2002. Vector-control synergies, between ‘Roll Back Malaria’ and the Global Programme to Eliminate Lymphatic Filariasis, in south-east Asia. Ann Trop Med Parasitol 96 (Suppl. 2): S133–S137. [Google Scholar]
  19. Burkot T, Bockarie M, 2004. Vectors. Am J Trop Med Hyg 71 (Suppl.): 24–26. [Google Scholar]
  20. Hunter JM, 1992. Elephantiasis: a disease of development in north east Ghana. Soc Sci Med 35 : 627–645. [Google Scholar]
  21. Rosengrant MW, Perez ND, 1997. Water Resource Development in Africa: A Review and Synthesis of Issues, Potentials and Strategies for the Future. International Food Policy Research Institute, EPTD Discussion Paper No. 28.
  22. Mott KE, Desjeux P, Moncayo A, Ranque P, de Raadt P, 1990. Parasitic diseases and urban development. Bull WHO 68 : 691–698. [Google Scholar]
  23. Knudsen AB, Slooff R, 1992. Vector-borne disease problems in rapid urbanization: new approaches to vector control. Bull WHO 70 : 1–6. [Google Scholar]
  24. United Nations, 2004. Nations Human Settlements Programme. Washington, DC: United Nations.
  25. Keiser J, Castro MC, Maltese MF, Bos R, Tanner M, Singer BH, Utzinger J, 2005. Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am J Trop Med Hyg 72 : 392–406. [Google Scholar]
  26. Fontes G, Rocha EM, Brito AC, Antunes CM, 1998. Lymphatic filariasis in Brazilian urban area (Maceió, Alagoas). Mem Inst Oswaldo Cruz 93 : 705–710. [Google Scholar]
  27. Durrheim DN, Wynd S, Liese B, Gyapong JO, 2004. Lymphatic filariasis endemicity—an indicator of poverty? Trop Med Int Health 9 : 843–845. [Google Scholar]
  28. Chernin E, 1987. The disappearance of bancroftian filariasis from Charleston, South Carolina. Am J Trop Med Hyg 37 : 111–114. [Google Scholar]
  29. Rajagopalan PK, Panicker KN, Das PK, 1987. Control of malaria and filariasis vectors in South India. Parasitol Today 3 : 233–241. [Google Scholar]
  30. Samarawickrema WA, Kimura E, Spears GF, Penaia L, Sone F, Paulson GS, Cummings RF, 1987. Distribution of vectors, transmission indices and microfilaria rates of subperiodic Wuchereria bancrofti in relation to village ecotypes in Samoa. Trans R Soc Trop Med Hyg 81 : 129–135. [Google Scholar]
  31. Raccurt CP, Lowrie RC Jr, Katz SP, Duverseau YT, 1988. Epidemiology of Wuchereria bancrofti in Leogane, Haiti. Trans R Soc Trop Med Hyg 82 : 721–725. [Google Scholar]
  32. Gad AM, Feinsod FM, Soliman BA, Nelson GO, Gibbs PH, Shoukry A, 1994. Exposure variables in bancroftian filariasis in the Nile Delta. J Egypt Soc Parasitol 24 : 439–455. [Google Scholar]
  33. Cao WC, Van der Ploeg CPB, Ren ZX, Habbema JDF, 1997. Success against lymphatic filariasis. World Health Forum 18 : 17–20. [Google Scholar]
  34. Jordan P, 1956. Filariasis in the Lake Province of Tanganyika. East Afr Med J 33 : 237–242. [Google Scholar]
  35. Appawu MA, Baffoe-Wilmot A, Afari EA, Nkrumah FK, Petrarca V, 1994. Species composition and inversion polymorphism of the Anopheles gambiae complex in some sites of Ghana, West Africa. Acta Trop 56 : 15–23. [Google Scholar]
  36. Dzodzomenyo M, Dunyo SK, Ahorlu CK, Coker WZ, Appawu MA, Pedersen EM, Simonsen PE, 1999. Bancroftian filariasis in an irrigation project community in southern Ghana. Trop Med Int Health 4 : 13–18. [Google Scholar]
  37. Smith A, 1955. The transmission of bancroftian filariasis on Ukara Island, Tanganyika II. The distribution bancroftian microfilaraemia compared with the distribution hut-haunting mosquitoes and their breeding-places. Bull Entomol Res 46 : 437–444. [Google Scholar]
  38. Appawu MA, Dadzie SK, Baffoe-Wilmot A, Wilson MD, 2001. Lymphatic filariasis in Ghana: entomological investigation of transmission dynamics and intensity in communities served by irrigation systems in the Upper East Region of Ghana. Trop Med Int Health 6 : 511–516. [Google Scholar]
  39. Supali T, Wibowo H, Rückert P, Fischer K, Ismid IS, Purnomo, Djuardi Y, Fischer P, 2002. High prevalence of Brugia timori infection in the highland of Alor Island, Indonesia. Am J Trop Med Hyg 66 : 560–565. [Google Scholar]
  40. Amerasinghe FP, Ariyasena TG, 1991. Survey of adult mosquitoes (Diptera: Culicidae) during irrigation development in the Mahaweli Project, Sri Lanka. J Med Entomol 28 : 387–393. [Google Scholar]
  41. Basu PC, 1957. Filariasis in Assam State. Indian J Malariol 11 : 293–308. [Google Scholar]
  42. Patz JA, Graczyk TK, Geller N, Vittor AY, 2000. Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30 : 1395–1405. [Google Scholar]
  43. Amerasinghe FP, 2003. Irrigation and mosquito-borne diseases. J Parasitol 89 (Suppl.): S14–S22. [Google Scholar]
  44. Molyneux DH, 2003. Common themes in changing vector-borne disease scenarios. Trans R Soc Trop Med Hyg 97 : 129–132. [Google Scholar]
  45. Keiser J, Utzinger J, Castro MC, Smith TA, Tanner M, Singer BH, 2004. Urbanization in sub-Saharan Africa and implication for malaria control. Am J Trop Med Hyg 71 (2 Suppl.): 118–127. [Google Scholar]
  46. Ezzati M, Utzinger J, Cairncross S, Cohen AJ, Singer BH, 2005. Environmental risks in the developing world: exposure indicators for evaluating interventions, programmes, and policies. J Epidemiol Community Health 59 : 15–22. [Google Scholar]
  47. Costantini C, Sagnon N, della Torre A, Coluzzi M, 1999. Mosquito behavioural aspects of vector-human interactions in the Anopheles gambiae complex. Parassitologia 41 : 209–217. [Google Scholar]
  48. Keiser J, Utzinger J, Singer BH, 2002. The potential of intermittent irrigation for increasing rice yields, lowering water consumption, reducing methane emissions, and controlling malaria in African rice fields. J Am Mosq Control Assoc 18 : 329–340. [Google Scholar]
  49. Surtees G, 1970. Effects of irrigation on mosquito populations and mosquito-borne diseases in man, with particular reference to ricefield extension. Int J Environ Stud 1 : 35–42. [Google Scholar]
  50. Amerasinghe FP, Munasingha NB, 1988. A predevelopment mosquito survey in the Mahaweli Development Project area, Sri Lanka: adults. J Med Entomol 25 : 276–285. [Google Scholar]
  51. Service MW, 1984. Problems of vector-borne disease and irrigation projects. Ins Sci Appl 5 : 227–231. [Google Scholar]
  52. Abdel-Wahab MF, Strickland GT, El-Sahly A, El-Kady N, Zakaria S, Ahmed L, 1979. Changing pattern of schistosomiasis in Egypt 1935–79. Lancet 314 : 242–244. [Google Scholar]
  53. Southgate VR, 1997. Schistosomiasis in the Senegal River Basin: before and after the construction of the dams at Diama, Senegal and Manantali, Mali and future prospects. J Helminthol 71 : 125–132. [Google Scholar]
  54. Kar SK, Mania J, Kar PK, 1993. Humoral immune response during filarial fever in Bancroftian filariasis. Trans R Soc Trop Med Hyg 87 : 230–233. [Google Scholar]
  55. Ravindran B, 2003. Aping Jane Goodall: insights into human lymphatic filariasis. Trends Parasitol 19 : 105–109. [Google Scholar]
  56. Hise AG, Hazlett FE, Bockarie MJ, Zimmerman PA, Tisch DJ, Kazura JW, 2003. Polymorphisms of innate immunity genes and susceptibility to lymphatic filariasis. Genes Immun 4 : 524–527. [Google Scholar]
  57. Stolk WA, Ramaiah KD, van Oortmarssen GJ, Das PK, Habbema JDF, de Vlas SJ, 2004. Meta-analysis of age-prevalence patterns in lymphatic filariasis: no decline in microfilaraemia prevalence in older age groups as predicted by models with acquired immunity. Parasitology 129 : 605–612. [Google Scholar]
  58. Samuel PP, Arunachalam N, Hiriyan J, Thenmozhi V, Gajanana A, Satyanarayana K, 2004. Host-feeding pattern of Culex quinquefasciatus Say and Mansonia annulifera (Theobald) (Diptera: Culicidae), the major vectors of filariasis in a rural area of south India. J Med Entomol 41 : 442–446. [Google Scholar]
  59. Lindsay SW, Thomas CJ, 2000. Mapping and estimating the population at risk from lymphatic filariasis in Africa. Trans R Soc Trop Med Hyg 94 : 37–45. [Google Scholar]
  60. United Nations, 2004. World Urbanization Prospects. The 2003 Revisions. New York: Department of Economic and Social Affairs; Population Division of the United Nations (ESA/P/WP.190).
  61. WHO, 2002. Defining the Roles of Vector Control and Xenomonitoring in the Global Programme to Eliminate Lymphatic Filariasis. Report of the Informal Consultation. Geneva: World Health Organization (WHO/CDS/CPE/PVC/2002.3).
  62. Michael E, Bundy DAP, Grenfell BT, 1996. Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology 112 : 409–428. [Google Scholar]
  63. WHO, 2002. Lymphatic Filariasis Elimination in the Americas. Report of the Regional Program-Manager’s Meeting. Port-au-Prince, Haiti: Pan American Health Organization.
  64. WHO, 2003. Lymphatic filariasis. Wkly Epidemiol Rec 78 : 171–179. [Google Scholar]
  65. Kazura JW, Bockarie MJ, 2003. Lymphatic filariasis in Papua New Guinea: interdisciplinary research on a national health problem. Trends Parasitol 19 : 260–263. [Google Scholar]

Data & Media loading...

  • Received : 19 Sep 2004
  • Accepted : 22 Jan 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error