Volume 73, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Despite control programs based on mass drug administration (MDA) of microfilaricidal compounds, Bancroftian lymphatic filariasis remains a problem in French Polynesia. For an alternative strategy to MDA, we investigated the potential role of to control filarial transmission. are intracellular α-proteobacteria endosymbionts that infect a broad range of insects and nematodes. These bacteria have a suspected role in the pathogenesis of filariasis. They also may be useful in mosquito control through cytoplasmic incompatibility. To detect and characterize these bacteria in the filarial and mosquito-vectors in French Polynesia, a survey was conducted on field-collected mosquitoes and microfilariae from infected people. Samples were analyzed by a polymerase chain reaction and gene sequencing. The results indicate that these bacteria are widespread. Sequence analysis of the and genes positioned the in cluster A and in cluster D. The implications for possible improved treatment and vector control are discussed.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Bazzocchi C, Jamnongluk W, O’Neill SL, Anderson TJ, Genchi C, Bandi C, 2000. wsp gene sequences from the Wolbachia of filarial nematodes. Curr Microbiol 41 : 296–300. [Google Scholar]
  2. Bandi C, Anderson TJ, Genchi C, Blaxter ML, 1998. Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B Biol Sci 265 : 2407–2413. [Google Scholar]
  3. Taylor MJ, Hoerauf A, 1999. Wolbachia bacteria of filarial nematodes. Parasitol Today 15 : 437–442. [Google Scholar]
  4. Taylor, 2000. Elimination of lymphatic filariasis as a public health problem. Trans R Soc Trop Med Hyg 94 : 596–598. [Google Scholar]
  5. Bandi C, Trees AJ, Brattig NW, 2001. Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 98 : 215–238. [Google Scholar]
  6. Taylor MJ, 2003. Wolbachia in the inflammatory pathogenesis of human filariasis. Ann N Y Acad Sci 990 : 444–449. [Google Scholar]
  7. Hise AG, Gillette-Ferguson I, Pearlman E, 2004. The role of endosymbiotic Wolbachia bacteria in filarial disease. Cell Microbiol 6 : 97–104. [Google Scholar]
  8. Lamb TJ, Le Goff L, Kurniawan A, Guiliano DB, Fenn K, Blaxter ML, Read AF, Allen JE, 2004. Most of the response elicited against Wolbachia surface protein in filarial nematode infection is due to the infective larval stage. J Infect Dis 189 : 120–127. [Google Scholar]
  9. Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sacchi L, 1999. Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol 29 : 357–364. [Google Scholar]
  10. Smith HL, Rajan TV, 2000. Tetracycline inhibits development of the infective stage larvae of filarial nematodes in vitro. Exp Parasitol 95 : 265–270. [Google Scholar]
  11. Townson S, Hutton D, Siemienska J, Hollick L, Scanlon T, Tagboto SK, Taylor MJ, 2000. Antibiotics and Wolbachia in filarial nematodes: antifilarial activity of rifampicin, oxytetracycline and chloramphenicol against Onchocerca gutturosa, Onchocerca lienalis and Brugia pahangi. Ann Trop Med Parasitol 94 : 801–816. [Google Scholar]
  12. Langworthy NG, Renz A, Mackenstedt U, Henkle-Duhrsen K, de Bronsvoort MB, Tanya VN, Donnelly MJ, Trees AJ, 2000. Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia procedes worm death and suggests a dependent relationship. Proc R Soc Lond B Biol Sci 267 : 1063–1069. [Google Scholar]
  13. Taylor MJ, Hoerauf A, 2001. A new approach to the treatment of filariasis. Curr Opinion Infect Dis 14 : 727–731. [Google Scholar]
  14. Taylor MJ, Bilo K, Cross HF, Archer JP, Underwood AP, 1999. 16S rDNA phylogeny and ultrastructural characterization of Wolbachia intracellular bacteria of the filarial nematodes Brugia malayi, B. pahangi and Wuchereria bancrofti. Exp Parasitol 91 : 356–361. [Google Scholar]
  15. Hoti SL, Shridhar A, Das PK, 2003. Presence of Wolbachia endosymbionts in microfilariae of Wuchereria bancrofti (Spirurida: Onchocercidae) from different geographical regions in India. Mem Inst Oswaldo Cruz 98 : 1017–1019. [Google Scholar]
  16. Hoerauf A, Mand S, Fischer K, Kruppa T, Marfo-Debrekyei Y, Debrah AY, Pfarr KM, Adjei O, Buttner DW, 2003. Doxycycline as a novel strategy against bancroftian filariasis-depletion of Wolbachia endosymbionts from Wuchereria bancrofti and stop of microfilaria production. Med Microbiol Immunol 192 : 211–216. [Google Scholar]
  17. Moulia-Pelat JP, Glaziou P, Chanteau S, Nguyen-Ngoc L, Marcet Y, Cardines R, Martin PM, Cartel JL, 1993. Periodicity of Wuchereria bancrofti var. pacifica filariasis in French Polynesia. Trop Med Parasitol 44 : 83–85. [Google Scholar]
  18. Pichon G, Treuil JP, 2004. Genetic determinism of parasitic circadian periodicity and subperiodicity in human filariasis. C R Biol 327 : 1087–1094. [Google Scholar]
  19. Sinkins SP, Braig HR, O’Neill SL, 1995. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc R Soc Lond B Biol Sci 261 : 325–333. [Google Scholar]
  20. Stouthamer R, Breeuwer JA, Hurst GD, 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53 : 71–102. [Google Scholar]
  21. Dobson SL, Fox CW, Jiggins FM, 2002. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc R Soc Lond B Biol Sci 269 : 437–445. [Google Scholar]
  22. Desowitz RS, Southgate BA, Mataika JU, 1973. Study on filariasis in the Pacific. 3. Comparative efficacy of the stained blood film, counting chamber and membrane filtration technique for the diagnosis of Wuchereria bancrofti microfilaremia in untreated patients in areas of low endemicity. Southeast Asian J Trop Med Public Health 4 : 329–355. [Google Scholar]
  23. Moulia-Pelat JP, Glaziou P, Nguyen-Ngoc L, Cardines R, Spiegel A, Cartel JL, 1992. A comparative study of detection methods for evaluation of microfilaremia in lymphatic filariasis control programmes. Trop Med Parasitol 43 : 146–148. [Google Scholar]
  24. Bonnet DD, Chapman H, Kerrest J, Kessel JF, 1956. Mosquito collections and dissections for evaluating transmission of filariasis in Polynesia (Tahiti). Am J Trop Med Hyg 5 : 1093–1102. [Google Scholar]
  25. Failloux AB, Chanteau S, Chungue E, Loncke S, Sechan Y, 1991. Oral infection of Aedes polynesiensis by Wuchereria bancrofti by using parafilm membrane feeding. J Am Mosq Control Assoc 7 : 660–662. [Google Scholar]
  26. Nicolas L, Luquiaud P, Lardeux F, Mercer D, 1996. A polymerase chain reaction assay to determine infection of Aedes polynesiensis by Wuchereria bancrofti. Trans R Soc Trop Med Hyg 90 : 136–139. [Google Scholar]
  27. Casiraghi M, Anderson TJ, Bandi C, Bazzocchi C, Genchi C, 2001. A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122 : 193–203. [Google Scholar]
  28. Zhou W, Rousset F, O’Neill S, 1998. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B Biol Sci 265 : 509–515. [Google Scholar]
  29. Ruang-Areerate T, Kittayapong P, Baimai V, O’Neill SL, 2003. Molecular phylogeny of Wolbachia endosymbionts in southeast Asian mosquitoes (Diptera: Culicidae) based on wsp gene sequences. J Med Entomol 40 : 1–5. [Google Scholar]
  30. Dean JL, Dobson SL, 2004. Characterization of Wolbachia infections and interspecific crosses of Aedes (Stegomyia) polynesiensis and Ae. (Stegomyia) riversi (Diptera: Culicidae). J Med Entomol 4 : 894–900. [Google Scholar]
  31. Werren JH, Zhang W, Guo LR, 1995. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 261 : 55–71. [Google Scholar]
  32. Werren JH, Windsor DM, 2000. Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc Lond B Biol Sci 267 : 1277–1285. [Google Scholar]
  33. Kittayapong P, Baisley KJ, Baimai V, O’Neill S, 2000. Distribution and diversity of Wolbachia infections in southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 37 : 340–345. [Google Scholar]
  34. Kittayapong P, Baimai V, O’Neill S, 2002. Field prevalence of Wolbachia in the mosquito vector Aedes albopictus. Am J Trop Med Hyg 66 : 108–111. [Google Scholar]
  35. Ricci I, Cancrini G, Gabrielli S, d’Amelio S, Favia G, 2002. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): Large polymerase chain reaction survey and new identifications. J Med Entomol 39 : 562–567. [Google Scholar]
  36. Rasgon JL, Scott TW, 2004. An initial survey for Wolbachia (Rickettsiales: Rickettsiaceae) infections in selected California mosquitoes (Diptera: Culicidae). J Med Entomol 41 : 255–257. [Google Scholar]
  37. Lardeux F, Cheffort J, 1996. Behavior of Wuchereria bancrofti (Filariidea: Onchocercidae) infective larvae in the vector Aedes polynesiensis (Diptera: Culicidae) in relation to parasite transmission. J Med Entomol 33 : 516–524. [Google Scholar]
  38. Pichon G, 2002. Limitation and facilitation in the vectors and other aspects of the dynamics of filarial transmission: the need for vector control against Anopheles-transmitted filariasis. Ann Trop Med Parasitol 96 : 143–152. [Google Scholar]
  39. Lardeux F, Rivière F, Sechan Y, Loncke S, 2002. Control of the Aedes vectors of the dengue viruses and Wuchereria bancrofti: the French Polynesia experience. Ann Trop Med Parasitol 96 : 105–116. [Google Scholar]

Data & Media loading...

  • Received : 17 Feb 2005
  • Accepted : 07 Mar 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error