Volume 73, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


To date, no polymerase chain reaction diagnostic technique exists to directly identify mammalian blood meals from mosquitoes by sized DNA fragments following agarose gel electrophoresis. We have developed a vertebrate-specific multiplexed primer set based on mitochondrial cytochrome b to identify the mammalian blood hosts of field-collected mosquitoes. Although designed for the study of African malaria vectors, the application of this tool is not restricted to this disease system. Validation of this diagnostic technique on dried anopheline and culicine field specimens collected in Zambia and Mali demonstrated that blood meals could be identified 2–7 months after collection. Time course experiments showed that host DNA was detectable in frozen mosquito abdomens 24–30 hours post-feeding. Additionally, multiple blood meals from different mammals could be detected in a single mosquito. This diagnostic assay will be a valuable tool for identifying the blood meals of field-collected mosquitoes where people and alternative mammal hosts are present.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Boorman J, Mellor PS, Boreham PFL, Hewett RS, 1977. A latex agglutination test for the identification of blood-meals of Culicoides (Diptera: Ceratopogonidae). Bull Entomol Res 67 : 305–311. [Google Scholar]
  2. Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP II, Koech DK, 1988. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J Med Entomol 25 : 9–16. [Google Scholar]
  3. Washino RK, Tempelis CH, 1983. Mosquito host bloodmeal identification: methodology and data analysis. Annu Rev Entomol 28 : 179–201. [Google Scholar]
  4. Gomes LAM, Duarte R, Lima DC, Diniz BS, Serrão ML, Labarthe N, 2001. Comparison between precipitin and ELISA tests in the bloodmeal detection of Aedes aegypti (Linnaeus) and Aedes fluviatilis (Lutz) mosquitoes experimentally fed on feline, canine, and human hosts. Mem Inst Oswaldo Cruz 96 : 693–695. [Google Scholar]
  5. Gokool S, Curtis CF, Smith DF, 1993. Analysis of mosquito bloodmeals by DNA profiling. Med Vet Entomol 7 : 208–215. [Google Scholar]
  6. Lord WD, DiZinno JA, Wilson MR, Budowle B, Tapalin D, Meinking TL, 1998. Isolation, amplification, and sequencing of human mitochondrial DNA obtained from human crab louse, Pthirus pubis (L.), blood meals. J Forensic Sci 43 : 1097–1100. [Google Scholar]
  7. Bataille M, Crainic K, Leterreux M, Durigon M, deMazancourt P, 1999. Multiplex amplification of mitochondrial DNA for human and species identification in forensic evaluation. Forensic Sci Int 99 : 165–170. [Google Scholar]
  8. Chow-Shaffer E, Sina B, Hawley WA, deBenedictis J, Scott TW, 2000. Laboratory and field evaluation of polymerase chain reaction-based forensic DNA profiling for use in identification of human blood meal sources of Aedes aegypti (Diptera: Culicidae). J Med Entomol 37 : 492–502. [Google Scholar]
  9. Ansell J, Hu JT, Gilbert SC, Hamilton KA, Hill AV, Lindsay SW, 2000. Improved method for distinguishing the human source of mosquito blood meals between close family members. Trans R Soc Trop Med Hyg 94 : 572–574. [Google Scholar]
  10. Bottero MT, Dalmasso IA, Nucera D, Turi RM, Rosati S, Squadrone S, Goria M, Civera T, 2003. Development of a PCR assay for the detection of animal tissues in ruminant feeds. J Food Prot 66 : 2307–2321. [Google Scholar]
  11. deBenedictis J, Chow-Shaffer E, Costero A, Clark GA, Edman JD, Scott TW, 2003. Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Pureto Rico, using polymerase chain reaction-based DNA profiling. Am J Trop Med Hyg 68 : 4437–4446. [Google Scholar]
  12. Hatefi Y, 1985. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54 : 1015–1069. [Google Scholar]
  13. Irwin DM, Kocher TD, Wilson AC, 1991. Evolution of the cytochrome b gene of mammals. J Mol Evol 32 : 128–144. [Google Scholar]
  14. Kirstein F, Gray JS, 1996. A molecular marker for the identification of the zoonotic reservoirs of Lyme borreliosis by analysis of the blood meal in its European vector Ixodes ricinus. Appl Environ Microbiol 62 : 4060–4065. [Google Scholar]
  15. Boake DA, Tang J, Truc P, Merriweather A, Unnasch TR, 1999. Identification of bloodmeals in haematophagous Diptera by cytochrome B heteroduplex analysis. Med Vet Entomol 13 : 282–287. [Google Scholar]
  16. Lee JH, Hassan H, Hill G, Cupp EW, Higazi TB, Mitchell CJ, Godsey MS Jr, Unnasch TR, 2002. Identification of mosquito avian-derived blood meals by polymerase chain reaction-heteroduplex analysis. Am J Trop Med Hyg 66 : 599–604. [Google Scholar]
  17. Ngo KA, Kramer LD, 2003. Identification of mosquito blood-meals using polymerase chain reaction (PCR) with order-specific primers. J Med Entomol 40 : 215–222. [Google Scholar]
  18. Pichon B, Egan D, Rogers M, Gray J, 2003. Detection and identification of pathogens and host DNA in unfed host-seeking Ixodes ricinus L. (Acari: Ixodidae). J Med Entomol 40 : 723– 731. [Google Scholar]
  19. Mukabana WR, Takken W, Seda P, Killeen GF, Hawley WA, Knols BGJ, 2002. Extent of digestion affects the success of amplifying human DNA from blood meals of Anopheles gambiae (Diptera: Culicidae). Bull Entomol Res 92 : 233–239. [Google Scholar]
  20. Norris DE, Shurtleff AC, Touré YT, Lanzaro GC, 2001. Micro-satellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae ss (Diptera: Culicidae). J Med Entomol 38 : 336–340. [Google Scholar]
  21. Gorrochotegui-Escalante N, DeLourdes Munoz M, Fernandez-Salas I, 2000. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am J Trop Med Hyg 62 : 200–209. [Google Scholar]
  22. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P, 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87 : 651–701. [Google Scholar]
  23. Rozen S, Skaletsky HJ, 2000. Primer3 on the WWW for general users and for biologist programmers. Krawetz S, Misener S, eds. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press, 365–386. http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
  24. Vaughan JA, Noden BH, Beier JC, 1991. Concentrations of human erythrocytes by anopheline mosquitos (Diptera: Culicidae) during feeding. J Med Entomol 28 : 780–786. [Google Scholar]
  25. Briegel H, Rezzonico L, 1985. Concentration of host blood protein during feeding by anopheline mosquitoes (Diptera: Culicidae). J Med Entomol 22 : 612–618. [Google Scholar]
  26. Gillies MT, DeMeillon B, 1968. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Second edition. Johannesburg, South Africa: Publication of the South African Institute for Medical Research No. 54.
  27. Gillies MT, Coetzee M, 1987. A Supplement to the Anophelinae of Africa South of the Sahara. Johannesburg, South Africa: Publication of the South African Institute for Medical Research No. 55.
  28. Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M, 2000. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol 14 : 181–189. [Google Scholar]
  29. Koekemoer LL, Kamau L, Hunt RH, Coetzee M, 2002. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg 6 : 804–811. [Google Scholar]
  30. Boreham PF, Jenahan JK, Boulzaguet R, Storey J, Ashkar TS, Nambian, Matsushima T, 1979. Studies on multiple feeding by Anopheles gambiae s.l. in a Sudan savanna area of northern Nigeria. Trans R Soc Trop Med Hyg 73 : 418–423. [Google Scholar]
  31. Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Lorenz LH, Edman JD, 1993. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol 30 : 922–927. [Google Scholar]
  32. Klowden MJ, Briegel H, 1994. Mosquito gonotrophic cycle and multiple feeding potential: contrasts between Anopheles and Aedes (Diptera: Culicidae). J Med Entomol 31 : 618–622. [Google Scholar]
  33. Wekesa JW, Yuval B, Washino RK, 1995. Multiple blood feeding in Anopheles freeborni (Diptera: Culicidae). Am J Trop Med Hyg 52 : 508–511. [Google Scholar]
  34. Anderson RA, Brust RA, 1995. Field evidence for multiple host contacts during blood feeding by Culex tarsalis, Cx. restuans, and Cx. nigripalpis (Diptera: Culicidae). J Med Entomol 32 : 705–710. [Google Scholar]
  35. Koella JC, Sorensen FL, Anderson RA, 1998. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc R Soc Lond B Biol Sci 265 : 763–768. [Google Scholar]
  36. Amerasinghe PH, Amerasinghe FP, 1999. Multiple host feeding in field populations of Anopheles culicifacies and An. subpictus in Sri Lanka. Med Vet Entomol 13 : 124–131. [Google Scholar]
  37. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37 : 89–101. [Google Scholar]
  38. Shililu JI, Maier WA, Seitz HM, Orago AS, 1998. Seasonal density, sporozoite rates and entomological inoculation rates of Anopheles gambiae and Anopheles funestus in a high-altitude sugarcane growing zone in Western Kenya. Trop Med Int Health 3 : 706–710. [Google Scholar]
  39. Bogh C, Clarke SE, Pinder M, Sanyang F, Lindsay SW, 2001. Effect of passive zooprophylaxis on malaria transmission in The Gambia. J Med Entomol 38 : 822–828. [Google Scholar]
  40. Wanji S, Tanke T, Atanga SN, Ajonina C, Nicholas T, Fontenille D, 2003. Anopheles species of the mount Cameroon region: biting habits, feeding behaviour and entomological inoculation rates. Trop Med Int Health 8 : 643–649. [Google Scholar]
  41. Mwangangi JM, Mbogo CM, Nzovu JG, Githure JI, Guiyun Y, Beier JC, 2003. Blood-meal analysis for anopheline mosquitoes sampled along the Kenyan coast. J Am Mosq Control Assoc 19 : 371–375. [Google Scholar]
  42. Eldridge BF, Scott TW, Day JF, Tabachnick TJ, 2000. Arbovirus Diseases. Eldridge BF, Edman JD, eds. Medical Entomology: A Textbook on Public Health and Veterinary Problems Caused by Arthropods. Dordrecht, The Netherlands: Kluwer Academic Publishers, 415–461.

Data & Media loading...

  • Received : 23 Nov 2004
  • Accepted : 31 Mar 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error