1921
Volume 73, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Evidence for introgression between and has accumulated for some time. We examined the fate of introgressed DNA directly, using microsatellite markers located throughout the genome. Introgressed chromosomes were removed within two generations. Furthermore, substantial differences in introgressive capacity between the two autosomes were found. After introgression from into most introgressed alleles at third chromosome markers, particularly those on decreased steadily, indicating selection against them. No such pattern was observed for markers and several markers. The frequency of introgressed alleles on were close to the original frequency even after 19 generations, whereas only two markers showed a modest decrease. Even though limited information was available on the reciprocal cross, the pattern appears to be identical. Although the decrease in frequency of the introgressed chromosome can be attributed to the presence of sterility and inviability effects, the variation in introgressive capacity of the autosomes does not appear to be explained by the presence of inversion polymorphisms, or regions causing hybrid sterility and inviability. These results can have some important implications for the spread of insecticide resistance and the control of these vector populations via the release of transgenic mosquitoes.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2005.73.326
2005-08-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/73/2/0730326.html?itemId=/content/journals/10.4269/ajtmh.2005.73.326&mimeType=html&fmt=ahah

References

  1. Coluzzi M, Sabatini A, Petrarca V, Di Deco MA, 1979. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73 : 483–497. [Google Scholar]
  2. Coluzzi M, Petrarca V, Di Deco MA, 1985. Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. Boll Zool 52 : 45–63. [Google Scholar]
  3. Davidson G, 1962. The Anopheles gambiae complex. Nature 196 : 907. [Google Scholar]
  4. Davidson G, 1964. The five mating types of the Anopheles gambiae complex. Riv Malariol 13 : 167–183. [Google Scholar]
  5. Hunt RH, Coetzee M, Fettene M, 1998. The Anopheles gambiae complex: a new species from Ethiopia. Trans R Soc Trop Med Hyg 92 : 231–235. [Google Scholar]
  6. White GB, 1974. The Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg 68 : 278–302. [Google Scholar]
  7. Coluzzi M, Sabatini A, 1967. Cytogenetic observations on species A and B of the Anopheles gambiae complex. Parassitologia 9 : 73–88. [Google Scholar]
  8. Coluzzi M, Sabatini A, 1968. Cytogenetic observations on species C of the Anopheles gambiae complex. Parassitologia 10 : 155–166. [Google Scholar]
  9. Coluzzi M, Sabatini A, 1969. Cytogenetic observations on the salt water species, Anopheles merus and Anopheles melas, of the gambiae complex. Parassitologia 11 : 177–187. [Google Scholar]
  10. Bullini L, Coluzzi M, 1978. Applied and theoretical significance of electrophoretic studies in mosquitoes (Diptera: Culicidae). Parassitologia 20 : 7–21. [Google Scholar]
  11. Miles SJ, 1978. Enzyme variation in the Anopheles gambiae Giles group of species (Diptera: Culicidae). Bull Entomol Res 68 : 85–96. [Google Scholar]
  12. Scott JA, Brogdon WG, Collins FH, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49 : 520–529. [Google Scholar]
  13. Marchand RP, 1984. Field observations on swarming and mating in Anopheles gambiae mosquitoes in Tanzania. Neth J Zool 34 : 367–387. [Google Scholar]
  14. Curtis CJ, 1982. The mechanism of hybrid males sterility from crosses in the Anopheles gambiae and Glossina morsitans complexes. Steiner WM, ed. Recent Developments in the Genetics of Disease Vectors. Champaign, IL: Stripes Publishing Company, 290–312.
  15. Slotman M, della Torre A, Powell JR, 2005. Female sterility in hybrids between An. gambiae and An. arabiensis and the causes of Haldane’s rule. Evolution 59 : 1016–1026. [Google Scholar]
  16. Petrarca V, Beier JC, Onyango F, Koros J, Asiago C, Koech DK, Roberst CR, 1991. Species composition of the Anopheles gambiae complex (Diptera, Culicidae) at two sites in western Kenya. J Med Entomol 28 : 307–313. [Google Scholar]
  17. Touré YT, Petrarca V, Traoré S, Coulibaly A, Maiga HM, Sankaré O, Sow M, Di Deco MA, Coluzzi M, 1998. Distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, west Africa. Parassitologia 40 : 477–511. [Google Scholar]
  18. Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pastuer N, Guillet P, Raymond M, 2000. The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Mol Biol 9 : 451–455. [Google Scholar]
  19. Coates CJ, Jasinskiene N, Miyashiro L, James AA, 1998. Mariner transposition and transformation of the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci USA 95 : 3748–3751. [Google Scholar]
  20. Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A, 2000. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405 : 959–962. [Google Scholar]
  21. Brennan JD, Kent M, Dhar R, Fujioka HA, Kumar N, 2000. Anopheles gambiae salivary gland proteins as putative targets for blocking transmission of malaria parasites. Proc Natl Acad Sci USA 97 : 13859–13864. [Google Scholar]
  22. Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Hetru C, Hoa NT, Hoffmann JA, Kanzok SM, Letunic I, Levashina EA, Loukeris TG, Lycett G, Meister S, Michel K, Moita LF, Müller H-M, Osta MA, Paskewitz SM, Reichart J-M, Rzhetsky A, Troxler L, Vernick KD, Vlachou D, Volz J, von Mering C, Xu J, Zheng L, Bork P, Kafatos FC, 2002. Immunity-related genes and gene families in Anopheles gambiae. Science 298 : 159–165. [Google Scholar]
  23. Dimopoulos G, Müller H-M, Levashina EA, Kafatos FC, 2001. Innate immune defense against malaria infection in the mosquito. Curr Opin Immunol 13 : 79–88. [Google Scholar]
  24. Dimopoulos G, 2003. Insect immunity and its implication in mosquito-malaria interactions. Cell Microbiol 5 : 3–14. [Google Scholar]
  25. Coluzzi M, 1982. Spatial distribution of chromosomal inversions and speciation in anopheline mosquitoes. Barigozzi C, ed. Mechanisms of Speciation. New York: Alan R. Liss, 113–153.
  26. Coluzzi M, Sabatini A, dellaTorre A, Di Deco MA, Petrarca V, 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298 : 1415–1418. [Google Scholar]
  27. Caccone A, Min GS, Powell JR, 1998. Multiple origins of cytologically identical chromosome inversions in the Anopheles gambiae complex. Genetics 150 : 807–814. [Google Scholar]
  28. Garcia BA, Caccone A, Mathiopoulos KD, Powell JR, 1996. Inversion monophyly in African anopheline malaria vectors. Genetics 143 : 1313–1320. [Google Scholar]
  29. della Torre A, Merzagora L, Powell JR, Coluzzi M, 1997. Selective introgression of paracentric inversions between two sibling species of the Anopheles gambiae complex. Genetics 146 : 239–244. [Google Scholar]
  30. Mukabayire O, Caridi J, Wang X, Touré YT, Coluzzi M, Besansky NJ, 2001. Patterns of DNA sequence variation in chromosomally recognized taxa of Anopheles gambiae: evidence from rDNA and single-copy loci. Insect Mol Biol 10 : 33–46. [Google Scholar]
  31. Besansky NJ, Powell JR, Caccone A, Hamm DM, Scott JM, 1994. Molecular phylogeny of the Anopheles gambiae complex suggests genetic introgression between principle malaria vectors. Proc Natl Acad Sci USA 91 : 6885–6888. [Google Scholar]
  32. Caccone A, Garcia BA, Powell JR, 1996. Evolution of the mitochondrial DNA control region in the Anopheles gambiae complex. Insect Mol Biol 5 : 51–59. [Google Scholar]
  33. Besansky NJ, Krzywinski J, Lehmann T, Simard F, Kern M, Mukabayire O, Fontenille D, Touré Y, Sagnon N’F, 2003. Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: Evidence from multilocus DNA sequence variation. Proc Natl Acad Sci USA 100 : 10818–10823. [Google Scholar]
  34. Slotman M, della Torre A, Powell JR, 2004. The genetics of inviability and male sterility in hybrids between Anopheles gambiae and An. arabiensis. Genetics 167 : 275–287. [Google Scholar]
  35. Alstadt D, 1998 Populus version 4.3. Available at http://www.cbs.umn.edu/populus.
  36. Zheng LB, Benedict MO, Cornel AJ, Collins FH, Kafatos FC, 1996. An integrated genetic map of the African human malaria vector mosquito Anopheles gambiae. Genetics 143 : 941–952. [Google Scholar]
  37. Collins FH, Paskewitz SM, Finnerty V, 1989. Ribosomal RNA genes of the Anopheles gambiae complex. Harris KF ed. Advances in Disease Vector Research. New York: Springer-Verlag, 1–28.
  38. Curtis CJ, Chalkey J, 1979. Lack of recombination between the X chromosomes of different members of the Anopheles gambiae complex. Heredity 42 : 323–326. [Google Scholar]
  39. Schneider S, Roessli D, Excoffier L, 2000. ARLEQUIN, Version 2000: A Software for Population Genetic Data Analysis. Geneva: Genetics and Biometry Laboratory, University of Geneva.
  40. Guo SW, Thompson EA, 1992. A Monte-Carlo method for combined segregation and linkage analysis. Am J Hum Genet 51 : 1111–1126. [Google Scholar]
  41. Slatkin M, Excoffier L, 1996. Testing for linkage disequilibrium in genotypic data using the expectation-maximization algorithm. Heredity 76 : 377–383. [Google Scholar]
  42. Rieseberg LH, Whitton J, Gardner K, 1999. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152 : 713–727. [Google Scholar]
  43. Noor MAF, Grams KL, Bertucci LA, Reiland J, 2001. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98 : 12084–12088. [Google Scholar]
  44. Wang RL, Wakeley J, Hey J, 1997. Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics 147 : 1091–1106. [Google Scholar]
  45. Machado CA, Kliman RM, Markert JA, Hey J, 2002. Inferring the history of speciation from multilocus DNA sequence data: The case of Drosophila pseudoobscura and close relatives. Mol Biol Evol 19 : 472–488. [Google Scholar]
  46. Wu C-I, 2001. The genic view of speciation. J Evol Biol 14 : 851–865. [Google Scholar]
  47. Ting CT, Tsaur SC, Wu CI, 2000. The phyglogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. Proc Natl Acad SciUSA 97 : 5313–5316. [Google Scholar]
  48. Krzywinski J, Besansky NJ, 2003. Molecular systematics of Anopheles: from subgenera to subpopulations. Annu Rev Entomol 48 : 111–139. [Google Scholar]
  49. Lanzaro GC, Touré YT, Carnahan J, Zheng LB, Dolo G, Traoré S, Petrarca V, Vernick KD, Taylor CE, 1998. Complexities in the genetic structure of Anopheles gambiae populations in west Africa as revealed by microsatellite DNA analysis. Proc Natl Acad Sci USA 95 : 14260–14265. [Google Scholar]
  50. Taylor C, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, Edillo FE, Lanzaro GC, 2001. Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, west Africa. Genetics 157 : 743–750. [Google Scholar]
  51. Favia G, della Torre A, Bagayoko M, Lanfrancotti A, Sagnon N’F, Touré YT, Coluzzi M, 1997. Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Mol Biol 6 : 377–383. [Google Scholar]
  52. Wang R, Zheng L, Touré YT, Dandekar T, Kafatos FC, 2001. When genetic distance matters: measuring genetic differentiation at microsatellite loci in whole-genome scans of recent and incipient mosquito species. Proc Natl Acad Sci USA 98 : 10769–10774. [Google Scholar]
  53. Lehmann TM, Licht M, Elissa N, Maega BTA, Chimumbwa JM, Watsenga FT, Wondji CS, Simard F, Hawley WA, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94 : 133–147. [Google Scholar]
  54. Gentile G, Slotman M, Ketmaier V, Powell JR, Caccone A, 2001. Attempts to molecularly distinguish cryptic taxa in Anopheles gambiae s.s. Insect Mol Biol 10 : 25–32. [Google Scholar]
  55. Diabaté A, Baldet T, Chandre F, Dabire KR, Simard F, Ouedraogo JB, Guillet P, Hougard JM, 2004. First report of a kdr mutation in Anopheles arabiensis from Burkina Faso, west Africa. J Am Mosq Control Assoc 20 : 195–196. [Google Scholar]
  56. Diabate A, Brengues C, Baldet T, Dabiré KR, Hougard JM, Akogbeto M, Kengne P, Simard F, Guillet P, Hemingway J, Chandre F, 2004. The spread of the Lue-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop Med Int Health 9 : 1267–1273. [Google Scholar]
  57. Stump AD, Atieli FK, Vulule JM, Besansky NJ, 2004. Dynamics of the pyrethroid knockdown resistance allele in western Kenyan populations of Anopheles gambiae in response to insecticide treated bed net trails. Am J Trop Med Hyg 70 : 591–596. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2005.73.326
Loading
/content/journals/10.4269/ajtmh.2005.73.326
Loading

Data & Media loading...

  • Received : 07 Oct 2004
  • Accepted : 17 Feb 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error