Volume 73, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Because eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP) are critical in the pathogenesis of tropical pulmonary eosinophilia (TPE), we analyzed genetic polymorphisms of both in 181 individuals from southern India with varying clinical manifestations of infection (including 26 with TPE). Using haplotype frequency analysis, we identified four known (of nine) and two novel haplotypes for EDN (1, 2, 7, 8, 10, and 11). For ECP, five (of seven known) haplotypes (1–5) were identified. Although we found no significant association between frequencies of EDN and ECP polymorphisms and TPE development, we observed a unique pattern of EDN and ECP polymorphism distribution among this population. Genotype TT at locus 1088 of ECP in one TPE patient was not observed in any other clinical group. Although the EDN and ECP polymorphisms appear unlikely to be associated with the development of TPE, further analyses will be more definitive.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Rao CK, Ramaprasad K, Narasimham MV, Jaggi OP, 1981. Epidemiology of bancroftian filariasis in East Godavari district (Andhra Pradesh)—incidence of tropical pulmonary eosinophilia. Indian J Med Res 74 : 517–523. [Google Scholar]
  2. Choi EH, Zimmerman PA, Foster CB, Zhu S, Kumaraswami V, Nutman TB, Chanock SJ, 2001. Genetic polymorphisms in molecules of innate immunity and susceptibility to infection with Wuchereria bancrofti in South India. Genes Immun 2 : 248–253. [Google Scholar]
  3. Ottesen EA, Neva FA, Paranjape RS, Tripathy SP, Thiruvengadam KV, Beaven MA, 1979. Specific allergic sensitisation to filarial antigens in tropical eosinophilia syndrome. Lancet 1 : 1158–1161. [Google Scholar]
  4. Nutman TB, Vijayan VK, Pinkston P, Kumaraswami V, Steel C, Crystal RG, Ottesen EA, 1989. Tropical pulmonary eosinophilia: analysis of antifilarial antibody localized to the lung. J Infect Dis 160 : 1042–1050. [Google Scholar]
  5. Mahanty S, King CL, Kumaraswami V, Regunathan J, Maya A, Jayaraman K, Abrams JS, Ottesen EA, Nutman TB, 1993. IL-4- and IL-5-secreting lymphocyte populations are preferentially stimulated by parasite-derived antigens in human tissue invasive nematode infections. J Immunol 151 : 3704–3711. [Google Scholar]
  6. Pinkston P, Vijayan VK, Nutman TB, Rom WN, O’Donnell KM, Cornelius MJ, Kumaraswami V, Ferrans VJ, Takemura T, Yenokida G, Thiruvengadam KV, Tripathy SP, Ottesen EA, Crystal RG, 1987. Acute tropical pulmonary eosinophilia. Characterization of the lower respiratory tract inflammation and its response to therapy. J Clin Invest 80 : 216–225. [Google Scholar]
  7. O’Bryan L, Pinkston P, Kumaraswami V, Vijayan V, Yenokida G, Rosenberg HF, Crystal G, Ottesen EA, Nutman TB, 2003. Localized eosinophil degranulation mediates disease in tropical pulmonary eosinophilia. Infect Immun 71 : 1337–1342. [Google Scholar]
  8. Hamann KJ, Ten RM, Loegering DA, Jenkins RB, Heise MT, Schad CR, Pease LR, Gleich GJ, Barker RL, 1990. Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics 7 : 535–546. [Google Scholar]
  9. Ackerman SJ, Loegering DA, Venge P, Oslsson I, Harley JB, Fauci AS, Gleich GJ, 1983. Distinctive cationic proteins of the human eosinophil granule: major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin. J Immunol 131 : 2977–2982. [Google Scholar]
  10. Rosenberg HF, Domachowske JB, 1999. Eosinophils, ribonucleases and host defense: solving the puzzle. Immunol Res 20 : 261–274. [Google Scholar]
  11. Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ, 1986. Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci USA 83 : 3146–3150. [Google Scholar]
  12. Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF, 1998. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177 : 1458–1464. [Google Scholar]
  13. Lee-Huang S, Huang PL, Sun Y, Kung HF, Blithe DL, Chen HC, 1999. Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc Natl Acad Sci USA 96 : 2678–2681. [Google Scholar]
  14. Young JD, Peterson CG, Venge P, Cohn ZA, 1986. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321 : 613–616. [Google Scholar]
  15. Waters LS, Taverne J, Tai PC, Spry CJ, Targett GA, Playfair JH, 1987. Killing of Plasmodium falciparum by eosinophil secretory products. Infect Immun 55 : 877–881. [Google Scholar]
  16. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ, 1989. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142 : 4428–4434. [Google Scholar]
  17. Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW, Barker RL, 1990. In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol 144 : 3166–3173. [Google Scholar]
  18. Venge P, Bystrom J, 1998. Eosinophil cationic protein (ECP). Int J Biochem Cell Biol 30 : 433–437. [Google Scholar]
  19. Zhang J, Rosenberg HF, 2000. Sequence variation at two eosinophil-associated ribonuclease loci in humans. Genetics 156 : 1949–1958. [Google Scholar]
  20. Jonsson UB, Bystrom J, Stalenheim G, Venge P, 2002. Polymorphism of the eosinophil cationic protein-gene is related to the expression of allergic symptoms. Clin Exp Allergy 32 : 1092–1095. [Google Scholar]
  21. Noguchi E, Iwama A, Takeda K, Takeda T, Kamioka M, Ichikawa K, Akiba T, Arinami T, Shibasaki M, 2003. The promoter polymorphism in the eosinophil cationic protein gene and its influence on the serum eosinophil cationic protein level. Am J Respir Crit Care Med 167 : 180–184. [Google Scholar]
  22. Moore D, 1998. Preparation and analysis of DNA. Current Protocols in Human Genetics. New York: John Wiley & Sons, Inc., 2.1.1–2.1.3.
  23. Stephens M, Smith NJ, Donnelly P, 2001. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68 : 978–989. [Google Scholar]
  24. Sham PC, Curtis D, 1995. Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 59 : 97–105. [Google Scholar]
  25. Cooray JH, Ismail MM, 1999. Re-examination of the diagnostic criteria of tropical pulmonary eosinophilia. Respir Med 93 : 655–659. [Google Scholar]
  26. Beg MA, Naqvi A, Zaman V, Hussain R, 2001. Tropical pulmonary eosinophilia and filariasis in Pakistan. Southeast Asian J Trop Med Public Health 32 : 73–75. [Google Scholar]
  27. Coutinho A, 1956. Tropical eosinophilia: clinical, therapeutic and etiologic considerations. Experimental work. Ann Intern Med 44 : 88–104. [Google Scholar]
  28. Hise AG, Hazlett FE, Bockarie MJ, Zimmerman PA, Tisch DJ, Kazura JW, 2003. Polymorphisms of innate immunity genes and susceptibility to lymphatic filariasis. Genes Immun 4 : 524–527. [Google Scholar]
  29. Meyer CG, Gallin M, Erttmann KD, Brattig N, Schnittger L, Gelhaus A, Tannich E, Begovich AB, Erlich HA, Horstmann RD, 1994. HLA-D alleles associated with generalized disease, localized disease, and putative immunity in Onchocerca volvulus infection. Proc Natl Acad Sci USA 91 : 7515–7519. [Google Scholar]
  30. Meyer CG, Schnittger L, May J, 1996. Met-11 of HLA class II DP α1 first domain associated with onchocerciasis. Exp Clin Immunogenet 13 : 12–19. [Google Scholar]
  31. Murdoch ME, Payton A, Abiose A, Thomson W, Panicker VK, Dyer PA, Jones BR, Maizels RM, Ollier WE, 1997. HLA-DQ alleles associate with cutaneous features of onchocerciasis. The Kaduna-London-Manchester Collaboration for Research on Onchocerciasis. Hum Immunol 55 : 46–52. [Google Scholar]
  32. Hoerauf A, Kruse S, Brattig NW, Heinzmann A, Mueller-Myhsok B, Deichmann KA, 2002. The variant Arg110Gln of human IL-13 is associated with an immunologically hyper-reactive form of onchocerciasis (Sowda). Microbes Infect 4 : 37–42. [Google Scholar]
  33. Udwadia FE, 1967. Tropical eosinophilia. A correlation of clinical, histopathologic and lung function studies. Dis Chest 52 : 531–538. [Google Scholar]
  34. Liu X, Nickel R, Beyer K, Wahn U, Ehrlich E, Freidhoff LR, Bjorksten B, Beaty TH, Huang SK, 2000. An IL-13 coding region variant is associated with a high total serum IgE level and atopic dermatitis in the German multicenter atopy study (MAS-90). J Allergy Clin Immunol 106 : 167–170. [Google Scholar]
  35. Graves PE, Kabesch M, Halonen M, Holberg CJ, Baldini M, Fritzsch C, Weiland SK, Erickson RP, von Mutius E, Martinez FD, 2000. A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 105 : 506–513. [Google Scholar]
  36. Heinzmann A, Mao XQ, Akaiwa M, Kreomer RT, Gao PS, Ohshima K, Umeshita R, Abe Y, Braun S, Yamashita T, Roberts MH, Sugimoto R, Arima K, Arinobu Y, Yu B, Kruse S, Enomoto T, Dake Y, Kawai M, Shimazu S, Sasaki S, Adra CN, Kitaichi M, Inoue H, Yamauchi K, Tomichi N, Kurimoto G, Hamasaki N, Hopkin JM, Izuhara K, Shirakawa T, Dichmann KA, 2000. Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet 9 : 549–559. [Google Scholar]
  37. Lin YC, Lu CC, Su HJ, Shen CY, Lei HY, Guo YL, 2002. The association between tumor necrosis factor, HLA-DR alleles, and IgE-mediated asthma in Taiwanese adolescents. Allergy 57 : 831–834. [Google Scholar]
  38. Risma KA, Wang N, Andrews RP, Cunningham CM, Ericksen MB, Bernstein JA, Chakraborty R, Hershey GK, 2002. V75R576 IL-4 receptor á is associated with allergic asthma and enhanced IL-4 receptor function. J Immunol 169 : 1604–1610. [Google Scholar]
  39. van Eerdewegh P, Little RD, Dupuis J, del Mastro RG, Galls K, Simon J, Torrey D, Pandit S, McKenney J, Braunschweiger K, Walsh A, Liu Z, Hayward B, Folz C, Manning SP, Bawa A, Saracino L, Thackston M, Benchekroun Y, Capparell N, Wang M, Adair R, Feng Y, Dubois J, FitzGerald MG, Huang H, Gibson R, Allen KM, Pedan A, Danzig MR, Umland SP, Egan RW, Cuss FM, Rorke S, Clough JB, Holloway JW, Holgate ST, Keith TP, 2002. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418 : 426–430. [Google Scholar]
  40. Lobos E, Zahn R, Weiss N, Nutman TB, 1996. A major allergen of lymphatic filarial nematodes is a parasite homolog of the γ-glutamyl transpeptidase. Mol Med 2 : 712–724. [Google Scholar]
  41. Gounni AS, Spanel-Borowski K, Palacios M, Heusser C, Moncada S, Lobos E, 2001. Pulmonary inflammation induced by a recombinant Brugia malayi γ-glutamyl transpeptidase homolog: involvement of humoral autoimmune responses. Mol Med 7 : 344–354. [Google Scholar]
  42. Pugin J, Heumann ID, Tomasz A, Kraychenko VV, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ, 1994. CD14 is a pattern recognition receptor. Immunity 1 : 509–516. [Google Scholar]
  43. Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF, 1991. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J 5 : 2652–2660. [Google Scholar]
  44. Narayanan K, Seufzer BJ, Brockman-Schneider RA, Gern JE, Balakrishnan A, Miyamoto S, 2002. CD14-dependent activation of NF-κB by filarial parasitic sheath proteins. Cell Biol Int 26 : 43–54. [Google Scholar]
  45. Kivisild T, Rootsi S, Metspalu M, Sdysms D, Kaldma K, Parik J, Metspaul E, Adojaan M, Tolk HV, Stepanov V, Golge M, Usanga E, Papiha SS, Cinnioglu C, King R, Cavalli-Sforza L, Underhill PA, Villems R, 2003. The genetic heritage of the earliest settlers persists both in Indian tribal and caste populations. Am J Hum Genet 72 : 313–332. [Google Scholar]
  46. Bamshad M, Kivisild T, Watkins WS, Dixon ME, Ricker CE, Rao BB, Naidu JM, Prasad BV, Reddy PG, Rasanayagam A, Papiha SS, Villems R, Redd AJ, Hammer MF, Nguyen SV, Carroll ML, Batzer MA, Jorde LB, 2001. Genetic evidence on the origins of Indian caste populations. Genome Res 11 : 994–1004. [Google Scholar]
  47. Majumder PP, Dey B, 2001. Absence of the HIV-1 protective Δccr5 allele in most ethnic populations of India. Eur J Hum Genet 9 : 794–796. [Google Scholar]
  48. Tosh K, Meisner S, Siddiqui MR, Balakrishnan K, Ghei S, Golding M, Sengupta U, Pitchappan RM, Hill AV, 2002. A region of chromosome 20 is linked to leprosy susceptibility in a South Indian population. J Infect Dis 186 : 1190–1193. [Google Scholar]
  49. Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, Weissman D, Cohen O, Rubbert A, Lam G, Vaccarezza M, Kennedy PE, Kumaraswami V, Giorgi JV, Detels R, Hunter J, Chopek M, Berger EA, Fauci AS, Nutman TB, Murphy PM, 1997. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3 : 23–36. [Google Scholar]

Data & Media loading...

  • Received : 06 Dec 2004
  • Accepted : 28 Dec 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error