Volume 73, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The goal of this study was to evaluate the antibody response induced by glutamate-rich protein (GLURP) in naturally exposed individuals from the Brazilian Amazon region (Rondonia State). The results showed that most individuals had IgG against two well-defined regions within GLURP, the relatively conserved N-terminal nonrepeat region (R0) and the immunodominant repeat region (R2), 67% and 79%, respectively. The peptides S4 from R2 (53%) and P11 from R0 (49%) were identified as immunodominant B cell epitopes and induced higher levels of antibodies. The number of GLURP peptides recognized and the levels of IgG against S4 and P11 peptides showed a positive correlation with age and time of exposure in the malaria-endemic area studied. The antibody responses against GLURP epitopes appear to be modulated by HLA class II antigens. Interestingly, the GLURP immunodominant B cell epitopes in individuals from a Brazilian malaria-endemic area are distinguishable from those of the African malaria-endemic area. Considering the importance of GLURP as a malaria vaccine candidate and the increasing focus on the use of subunit vaccines in the control of infectious diseases, the concern of the influence of class II allele frequencies in ethnically diverse populations may be important before vaccine trials are conducted among people naturally exposed to malaria parasites.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Borre MB, Dziegiel M, Hogh B, Petersen E, Rieneck K, Riley E, Meis JF, Aikawa M, Nakamura K, Harada M, Wind A, Jacobsen PH, Cowland J, Jepsen S, Axelsen NH, Vuust J, 1991. Primary structure and localization of a conserved immunogenic Plasmodium falciparum glutamate rich protein (GLURP) expressed in both the pre-erythrocytic and erythrocytic stages of the vertebrate life cycle. Mol Biochem Parasitol 49 : 119–131. [Google Scholar]
  2. Theisen M, Vuust J, Gottschau A, Jepsen S, Hogh B, 1995. Antigenicity and immunogenicity of recombinant glutamate-rich protein (GLURP) of Plasmodium falciparum expressed in Escherichia coli. Clin Diagn Lab Immunol 2 : 30–34. [Google Scholar]
  3. Stricker K, Vuust J, Jepsen S, Oeuvray C, Theisen M, 2000. Conservation and heterogeneity of the glutamate-rich protein (GLURP) among field isolates and laboratory lines of Plasmodium falciparum. Mol Biochem Parasitol 111 : 123–130. [Google Scholar]
  4. Dziegiel M, Borre MB, Jepsen S, Hogh B, Petersen E, Vuust J, 1991. Recombinant Plasmodium falciparum glutamate rich protein; purification and use in enzyme-linked immunosorbent assay. Am J Trop Med Hyg 44 : 306–313. [Google Scholar]
  5. Boudin C, Chumpitazi B, Dziegiel M, Peyron F, Picot S, Hogh B, Ambroise-Thomas P, 1993. Possible role of specific immunoglobulin M antibodies to Plasmodium falciparum antigens in immunoprotection of humans living in a hyperendemic area, Burkina Faso. J Clin Microbiol 31 : 636–641. [Google Scholar]
  6. Dziegiel M, Rowe P, Bennett S, Allen SJ, Olerup O, Gottschau A, Borre M, Riley EM, 1993. Immunoglobulin M and G antibody responses to Plasmodium falciparum glutamate-rich protein: correlation with clinical immunity in Gambian children. Infect Immun 61 : 103–108. [Google Scholar]
  7. Hogh B, Petersen E, Dziegiel M, David K, Hanson A, Borre M, Holm A, Vuust J, Jepsen S, 1992. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein: evidence for protection of individuals living in a holoendemic area of Liberia. Am J Trop Med Hyg 46 : 307–313. [Google Scholar]
  8. Hogh B, Thompson R, Zakiuddin IS, Boudin C, Borre M, 1993. Glutamate rich Plasmodium falciparum antigen (GLURP). Parassitologia 35 : 47–50. [Google Scholar]
  9. Dodoo D, Theisen M, Kurtzhals JA, Akanmori BD, Koram KA, Jepsen S, Nkrumah FK, Theander TG, Hviid L, 2000. Naturally acquired antibodies to the glutamate-rich protein are associated with protection against Plasmodium falciparum malaria. J Infect Dis 181 : 1202–1205. [Google Scholar]
  10. Oeuvray C, Theisen M, Rogier C, Trape JF, Jepsen S, Druilhe P, 2000. Cytophilic immunoglobulin responses to Plasmodium falciparum glutamate-rich protein are correlated with protection against clinical malaria in Dielmo, Senegal. Infect Immun 68 : 2617–2620. [Google Scholar]
  11. Soe S, Theisen M, Roussilhon C, Aye KS, Druilhe P, 2004. Association between protection against clinical malaria and antibodies to merozoite surface antigens in an area of hyperendemicity in Myanmar: complementarity between responses to merozoite surface protein 3 and the 220-kilodalton glutamate-rich protein. Infect Immun 72 : 247–252. [Google Scholar]
  12. Theisen M, Soe S, Oeuvray C, Thomas AW, Vuust J, Danielsen S, Jepsen S, Druilhe P, 1998. The glutamate-rich protein (GLURP) of Plasmodium falciparum is a target for antibody-dependent monocyte-mediated inhibition of parasite growth in vitro. Infect Immun 66 : 11–17. [Google Scholar]
  13. Khusmith S, Druilhe P, 1983. Cooperation between antibodies and monocytes that inhibit in vitro proliferation of Plasmodium falciparum. Infect Immun 41 : 219–223. [Google Scholar]
  14. Lunel F, Druilhe P, 1989. Effector cells involved in nonspecific and antibody-dependent mechanisms directed against Plasmodium falciparum blood stages in vitro. Infect Immun 57 : 2043–2049. [Google Scholar]
  15. Bouharoun-Tayoun HP, Attanath P, Subchaeron A, Chongsuphajaisiddhi T, Druilhe P, 1990. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med 172 : 1633–1641. [Google Scholar]
  16. Bouharoun-Tayoun HP, Druilhe P, 1992. P. falciparum malaria: evidence for an isotype imbalance may be responsible for the delayed acquisition of protective immunity. Infect Immun 60 : 1473–1481. [Google Scholar]
  17. Oeuvray C, Bouharoun-Tayoun H, Gras-Masse H, Bottius E, Kaidoh T, Aikawa M, Filgueira MC, Tartar A, Druilhe P, 1994. Merozoite surface protein-3: a malaria protein inducing antibodies that promote Plasmodium falciparum killing by cooperation with blood monocytes. Blood 84 : 1594–1602. [Google Scholar]
  18. Theisen M, Soe S, Jessing SG, Okkels LM, Danielsen S, Oeuvray C, Druilhe P, Jepsen S, 2001. Identification of a major B-cell epitope of the Plasmodium falciparum glutamate-rich protein (GLURP), target by human antibodies mediating parasite killing. Vaccine 19 : 204–212. [Google Scholar]
  19. Alves FP, Durlacher RR, Menezes MJ, Krieger H, Silva LH, Camargo EP, 2002. High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. Am J Trop Med Hyg 66 : 641–648. [Google Scholar]
  20. Braga EM, Carvalho LH, Fontes CJ, Krettli AU, 2002. Low cellular response in vitro among subjects with long-term exposure to malaria transmission in Brazilian endemic areas. Am J Trop Med Hyg 66 : 299–303. [Google Scholar]
  21. Ministério da Saúde, Fundação Nacional de Saúde, Brasilia, Brasil, 1997. Informe Epidemiológico do SUS.
  22. Camargo LM, dal Colletto GM, Ferreira MU, Gurgel SM, Escobar AL, Marques A, Krieger H, Camargo EP, da Silva LH, 1996. Hypoendemic malaria in Rondonia (Brazil, western Amazon region): seasonal variation and risk groups in an urban locality. Am J Trop Med Hyg 55 : 32–38. [Google Scholar]
  23. Shute GT, 1988. The microscpopic diagnosis of malaria. Wernsdorfer WH, McGregor SI, eds. Malaria: Principles and Practice of Malariology. New York: Churchill Livingstone, 781–814.
  24. Oliveira-Ferreira J, Pratt-Riccio LR, Arruda M, Santos S, Daniel-Ribeiro CT, Goldberg AC, Banic DM, 2004. HLA class II and antibody responses to circumsporozoite protein repeats of P. vivax (VK210, VK247 and P. vivax-like) in individuals naturally exposed to malaria. Acta Trop 92 : 63–69. [Google Scholar]
  25. Olerup O, Zetterquist H, 1992. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39 : 225–235. [Google Scholar]
  26. Bunce M, O’Neil CM, Barnardo MCNM, Krausa P, Browning MJ, Morris PJ, Welsh KI, 1995. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 and DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 46 : 355–367. [Google Scholar]
  27. Baur MP, Danilovs JA, 1980. Population analysis of HLA-A, B, C, DR and other genetic markers. Terasaki PI, ed. Histocompatibility Testing, Los Angeles: UCLA Tissue Typing Laboratory, 955–1210.
  28. Li CC, 1961. Human Genetics: Principles and Methods. New York: McGraw-Hill Book Company.
  29. Carvalho LJ, Daniel-Ribeiro CT, Goto H, 2002. Malaria vaccine: candidate antigens, mechanisms, constraints and prospects. Scand J Immunol 56 : 327–343. [Google Scholar]
  30. Mahanty S, Saul A, Miller LH, 2003. Progress in the development of recombinant and synthetic blood-stage malaria vaccines. J Exp Biol 206 : 3781–3788. [Google Scholar]
  31. Moorthy VS, Good MF, Hill AV, 2004. Malaria vaccine developments. Lancet 363 : 150–156. [Google Scholar]
  32. Jakobsen PH, Theander TG, Hviid L, Morris-Jones S, Jensen JB, Bayoumi RA, Greenwood BM, Bygbjerg IC, Heegaard PM, 1996. Antibody reactivities to glutamate-rich peptides of Plasmodium falciparum parasites in humans from areas of different malaria endemicity. APMIS 104 : 734–740. [Google Scholar]
  33. Camargo LM, Noronha E, Salcedo JM, Dutra AP, Krieger H, Pereira da Silva LH, Camargo EP, 1999. The epidemiology of malaria in Rondonia (Western Amazon region, Brazil): study of a riverine population. Acta Trop 72 : 1–11. [Google Scholar]
  34. Carvalho LJ, Oliveira SG, Theisen M, Alves FA, Andrade MC, Zanini GM, Brigido MC, Oeuvray C, Povoa MM, Muniz JA, Druilhe P, Daniel-Ribeiro CT, 2004. Immunization of Saimiri sciureus monkeys with Plasmodium falciparum merozoite surface protein-3 and glutamate-rich protein suggests that protection is related to antibody levels. Scand J Immunol 59 : 363–372. [Google Scholar]
  35. Modiano D, Petrarca V, Sirima BS, Luoni G, Nebie I, Diallo DA, Esposito F, Coluzzi M, 1999. Different response to Plasmodium falciparum in west African sympatric ethnic groups: possible implications for malaria control strategies. Parassitologia 41 : 193–197. [Google Scholar]
  36. Modiano D, Chiucchiuini A, Petrarca V, Sirima BS, Luoni G, Roggero MA, Corradin G, Coluzzi M, Esposito F, 1999. Inter-ethnic differences in the humoral response to non-repetitive regions of the Plasmodium falciparum circumsporozoite protein. Am J Trop Med Hyg 61 : 663–667. [Google Scholar]
  37. Beck HP, Felger I, Barker M, Bugawan T, Genton B, Alexander N, Jazwinska E, Erlich H, Alpers M, 1995. Evidence of HLA class II association with antibody response against the malaria vaccine SPF66 in a naturally exposed population. Am J Trop Med Hyg 53 : 284–288. [Google Scholar]
  38. Banic DM, Goldberg AC, Pratt-Riccio LR, De Oliveira-Ferreira J, Santos F, Gras-Masse H, Camus D, Kalil J, Daniel-Ribeiro CT, 2002. Human leukocyte antigen class II control of the immune response to p126-derived amino terminal peptide from Plasmodium falciparum. Am J Trop Med Hyg 66 : 509–515. [Google Scholar]
  39. Johnson AH, Leke RG, Mendell NR, Shon D, Suh YJ, Bomba-Nkolo D, Tchinda V, Kouontchou S, Thuita LW, van der Wel AM, Thomas A, Stowers A, Saul A, Zhou A, Taylor DW, Quakyi IA, 2004. Human leukocyte antigen class II alleles influence levels of antibodies to the Plasmodium falciparum asexual-stage apical membrane antigen 1 but not to merozoite surface antigen 2 and merozoite surface protein 1. Infect Immun 72 : 2762–2771. [Google Scholar]
  40. Stephens HA, Brown AE, Chandanayingyong D, Webster HK, Sirikong M, Longta P, Vangseratthama R, Gordon DM, Lekmak S, Rungruang E, 1995. The presence of the HLA class II allele DPB1*0501 in ethnic Thais correlates with an enhanced vaccine-induced antibody response to a malaria sporozoite antigen. Eur J Immunol 25 : 3142–3147. [Google Scholar]
  41. Patarroyo ME, Vinasco J, Amador R, Espejo F, Silva Y, Moreno A, Rojas M, Mora AL, Salcedo M, Valero V, Goldberg AK, Kalil J, 1991. Genetic control of the immune response to a synthetic vaccine against Plasmodium falciparum. Parasite Immunol 13 : 509–516. [Google Scholar]
  42. Nardin EH, Oliveira GA, Calvo-Calle JM, Castro ZR, Nussenzweig RS, Schmeckpeper B, Hall BF, Diggs C, Bodison S, Edelman R, 2000. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes. J Infect Dis 182 : 1486–1496. [Google Scholar]
  43. Baird JK, Purnomo, Basri H, Bangs MJ, Andersen EM, Jones TR, Masbar S, Harjosuwarno S, Subianto B, Arbani PR, 1993. Age-specific prevalence of Plasmodium falciparum among six populations with limited histories of exposure to endemic malaria. Am J Trop Med Hyg 49 : 707–719. [Google Scholar]

Data & Media loading...

  • Received : 05 Oct 2004
  • Accepted : 19 May 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error