Volume 73, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


together with sensu stricto, are the most important vectors of human malaria in sub-Saharan Africa. The malaria situation keeps worsening, with 1 to 3 million deaths a year, and alternative strategies are needed to decrease malaria transmission intensity. In this paper, we studied the population structure of from three sample sites on the remote Indian Ocean island of La Réunion. Our results showed strong genetic structuring between populations on La Réunion, indicating the presence of barriers to gene flow. Reasons for such a high genetic differentiation are discussed, including the role of intensive control measures that have maintained reduced effective population size as well as a putative genetic adaptation to the environment. This strong structuring situation on the island represents an ideal framework for the prospect of genetic-based control trials.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gillies MT, Coetzee M, 1987. A supplement to the anophelinae of Africa south of the Sahara. Publ South Afr Inst Med Res 55: 143 pp.
  2. Hunt RH, Coetzee M, Fettene M, 1998. The Anopheles gambiae complex: a new species from Ethiopia. Trans R Soc Trop Med Hyg 92 : 231–235. [Google Scholar]
  3. Coetzee M, Craig M, le Sueur D, 2000. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today 16 : 74–77. [Google Scholar]
  4. WHO. 2003. Africa malaria report 2003. Geneva: World Health Organization/UNICEF.
  5. Amorosa LF, Corbellini G, Coluzzi M, 2005. Lessons learned from malaria: Italy’s past and sub-Sahara’s future. Health Place 11 : 67–73. [Google Scholar]
  6. Toure YT, Coluzzi M, 2000. The challenges of doing more against malaria, particularly in Africa. Bull World Health Organ 78 : 1376. [Google Scholar]
  7. Moreira LA, Ghosh AK, Abraham EG, Jacobs-Lorena M, 2002. Genetic transformation of mosquitoes: a quest for malaria control. Int J Parasitol 32 : 1599–1605. [Google Scholar]
  8. Coleman PG, Alphey L, 2004. Genetic control of vector populations: an imminent prospect. Trop Med Int Health 9 : 433–437. [Google Scholar]
  9. Varmus H, Klausner R, Zerhouni E, Acharya T, Daar AS, Singer PA, 2003. Public health. Grand challenges in global health. Science 302 : 398–399. [Google Scholar]
  10. Benedict MQ, Robinson AS, 2003. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19 : 349–355. [Google Scholar]
  11. Dame DA, Jordan AM, 1981. Control of tsetse flies, Glossina spp. Adv Vet Sci Comp Med 25 : 101–119. [Google Scholar]
  12. Patterson RS, Weidhaas DE, Ford HR, Lofgren CS, 1970. Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males. Science 168 : 1368–1370. [Google Scholar]
  13. Hamon J, Dufour G, 1954. La lutte antipaludique à La Réunion. Bull WHO 11 : 525–556. [Google Scholar]
  14. Girod R, Salvan M, Denys JC, 1995. La lutte contre la réintroduction du paludisme à La Réunion. Cahier Santé 5 : 397–401. [Google Scholar]
  15. Girod R, Salvan M, Simard F, Andrianaivolambo L, Fontenille D, Laventure S, 1999. Evaluation of the vectorial capacity of Anopheles arabiensis (Diptera:Culicidae) on the island of Réunion: an approach to the health risk of malaria importation in an area of eradication. Bull Soc Pathol Exot 92 : 203–209. [Google Scholar]
  16. Gillies MT, De Meillon B, (1968). The Anophelinae of Africa south of the Sahara. Pub South Afr Inst Med Res 54: Evaluation of the vectorial capacity of Anopheles arabiensis (Diptera:Culicidae) on the island of Réunion: an approach to the health risk of malaria importation in an area of eradication. Bull Soc Pathol Exot 92 202–220. [Google Scholar]
  17. Morlais I, Ponçon N, Simard F, Cohuet A, Fontenille D, 2004. Intraspecific nucleotide variation in Anopheles gambiae: new insights into the biology of malaria vectors. Am J Trop Med Hyg 71 : 795–802. [Google Scholar]
  18. Scott JA, Brogdon WG, Collins FH, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49 : 520–529. [Google Scholar]
  19. Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC, 1996. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143 : 941–952. [Google Scholar]
  20. Zheng L, Collins FH, Kumar V, Kafatos FC, 1993. A detailed genetic map for the X chromosome of the malaria vector, Anopheles gambiae. Science 261 : 605–608. [Google Scholar]
  21. Simard F, Lehmann T, Lemasson JJ, Diatta M, Fontenille D, 2000. Persistence of Anopheles arabiensis during the severe dry season conditions in Senegal: an indirect approach using microsatellite loci. Insect Mol Biol 9 : 467–479. [Google Scholar]
  22. Simard F, Fontenille D, Lehmann T, Girod R, Brutus L, Gopaul R, Dournon C, Collins FH, 1999. High amounts of genetic differentiation between populations of the malaria vector Anopheles arabiensis from West Africa and eastern outer islands. Am J Trop Med Hyg 60 : 1000–1009. [Google Scholar]
  23. Wang R, Kafatos FC, Zheng L, 1999. Microsatellite markers and genotyping procedures for Anopheles gambiae. Parasitol Today 15 : 33–37. [Google Scholar]
  24. Kamau L, Lehmann T, Hawley WA, Orago AS, Collins FH, 1998. Microgeographic genetic differentiation of Anopheles gambiae mosquitoes from Asembo Bay, western Kenya: a comparison with Kilifi in coastal Kenya. Am J Trop Med Hyg 58 : 64–69. [Google Scholar]
  25. Raymond M, Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86 : 248–249. [Google Scholar]
  26. Holm S, 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6 : 65–70. [Google Scholar]
  27. Wright S, 1978. Variability within and among natural populations. In Evolution and Genetics of Populations., Vol. 4. Chicago: University of Chicago Press.
  28. Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38 : 1358–1370. [Google Scholar]
  29. Schneider S, Kueffer JM, Roessli D, Excoffier L, (1997). Arlequin ver. 1.1: A software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva.
  30. Waples RS, (1991). Genetic methods for estimating the effective population size of cetacean populations. In Hoelzel, AR. Genetic Ecology of Whales and Dolphins. Cambridge, University Press, 279–300.
  31. Waples RS, (1989). A generalized approach for estimating effective population size from temporal changes in allele frequencies. Genetics 121: 379–391. [Google Scholar]
  32. Pollak E, 1983. A new method for estimating effective population size from allele frequency changes. Genetics 104 : 531–548. [Google Scholar]
  33. Wondji C, Simard F, Fontenille D, 2002. Evidence for genetic differentiation between the molecular forms M and S within the Forest chromosomal form of Anopheles gambiae in an area of sympatry. Insect Mol Biol 11 : 11–19. [Google Scholar]
  34. Primmer CR, Moller AP, Ellegren H, 1996. A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol 5 : 365–378. [Google Scholar]
  35. Forbes KJ, Fang Z, Pennington TH, 1995. Allelic variation in the Helicobacter pylori flagellin genes flaA and flaB: its consequences for strain typing schemes and population structure. Epidemiol Infect 114 : 257–266. [Google Scholar]
  36. Donnelly MJ, Townson H, 2000. Evidence for extensive genetic differentiation among populations of the malaria vector Anopheles arabiensis in eastern Africa. Insect Mol Biol 9 : 357–367. [Google Scholar]
  37. Girod R, Coetzee M, Salvan M, Hunt RH, 2001. Chromosomal polymorphism of populations of Anopheles arabiensis (Diptera: Culicidae) from Reunion island and cross-fertility among continental African populations. Parassitologia 43 : 99–103. [Google Scholar]
  38. Donnelly MJ, Pinto J, Girod R, Besansky NJ, Lehmann T, 2004. Revisiting the role of introgression vs shared ancestral polymorphisms as key processes shaping genetic diversity in the recently separated sibling species of the Anopheles gambiae complex. Heredity 92 : 61–68. [Google Scholar]
  39. Wahlund S, 1928. Composition of populations from the perspective of the theory of heredity. Hereditas 11 : 65–105. [Google Scholar]
  40. Slatkin M, 1985. Rare alleles as indicators of gene flow. Evolution 39 : 53–65. [Google Scholar]
  41. Kamau L, Mukabana WR, Hawley WA, Lehmann T, Irungu LW, Orago AA, Collins FH, 1999. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol Biol 8 : 287–297. [Google Scholar]
  42. Nyanjom SR, Chen H, Gebre-Michael T, Bekele E, Shililu J, Githure J, Beier JC, Yan G, 2003. Population genetic structure of Anopheles arabiensis mosquitoes in Ethiopia and Eritrea. J Hered 94 : 457–463. [Google Scholar]
  43. Onyabe DY, Conn JE, 2001. Population genetic structure of the malaria mosquito Anopheles arabiensis across Nigeria suggests range expansion. Mol Ecol 10 : 2577–2591. [Google Scholar]
  44. Avise JC, 1994. Molecular markers, natural history and evolution. London: Chapman and Hall.
  45. Julvez J, Mouchet J, 1994. Le peuplement culicidien des îles du sud-ouest de l’Océan Indien. L’action de l’homme dans l’importation des espèces d’intérêt médical. Ann Soc Entomol Fr 30 : 391–401. [Google Scholar]
  46. Taylor CE, Manoukis NC, 2003. Effective population size in relation to genetic modification of Anopheles gambiae sensu stricto. In, Takken W, Scott TW. Ecological Aspects for Application of Genetically Modified Mosquitoes. Dordrecht, The Netherlands: Kluwer Academic Publishers. p 133–146.
  47. Berthier P, Beaumont MA, Cornuet JM, Luikart G, 2002. Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics 160 : 741–751. [Google Scholar]
  48. Tallmon DA, Luikart G, Beaumont MA, 2004. Comparative evaluation of a new effective population size estimator based on approximate bayesian computation. Genetics 167 : 977–988. [Google Scholar]
  49. Thomas DD, Donnelly CA, Wood RJ, Alphey LS, 2000. Insect population control using a dominant, repressible, lethal genetic system. Science 287 : 2474–2476. [Google Scholar]
  50. Heinrich JC, Scott MJ, 2000. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 97 : 8229–8232. [Google Scholar]

Data & Media loading...

  • Received : 05 Mar 2005
  • Accepted : 11 Jul 2005

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error