Volume 72, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The surveillance of prevalent and sand fly species in endemic areas is important for prediction of the risk and expansion of leishmaniasis. In this study, we developed a polymerase chain reaction (PCR)-based method for detection of minicircle DNA within individual sand flies. Using this method, we detected minicircle DNA in 6 (3.3%) of 183 sand flies, while 5 (3.5%) of 143 were positive for promastigotes in the same areas by microscopic examination. The species were identified as by nucleotide sequencing of the cytochrome b gene. Additionally, all the -positive sand flies were identified as by the restriction enzyme digestion of the PCR-amplified 18S ribosomal RNA gene fragments. Since this combined method is relatively easy and can process a large number of samples, it will be a powerful tool for the rapid identification of prevalent sand fly and species as well as monitoring the infection rate in sand fly populations in endemic areas.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Desjeux P, 1996. Leishmaniasis. Public health aspects and control. Clin Dermatol 14 : 417–423. [Google Scholar]
  2. Choi CM, Lerner EA, 2001. Leishmaniasis as an emerging infection. J Invest Dermatol Symp Proc 6 : 175–182. [Google Scholar]
  3. Killick-Kendrick R, 1999. The biology and control of phlebotomine sand flies. Clin Dermatol 17 : 279–289. [Google Scholar]
  4. Kreutzer RD, Souraty N, Semko ME, 1987. Biochemical identities and differences among Leishmania species and subspecies. Am J Trop Med Hyg 36 : 22–32. [Google Scholar]
  5. Grimaldi G Jr, David JR, McMahon-Pratt D, 1987. Identification and distribution of New World Leishmania species characterized by serodeme analysis using monoclonal antibodies. Am J Trop Med Hyg 36 : 270–287. [Google Scholar]
  6. Mimori T, Grimaldi G Jr, Kreutzer RD, Gomez EA, McMahon-Pratt D, Tesh RB, Hashiguchi Y, 1989. Identification, using isoenzyme electrophoresis and monoclonal antibodies, of Leishmania isolated from humans and wild animals of Ecuador. Am J Trop Med Hyg 40 : 154–158. [Google Scholar]
  7. Barker DC, 1989. Molecular approaches to DNA diagnosis. Parasitology 99 : S125–S146. [Google Scholar]
  8. Katakura K, Matsumoto Y, Gomez EA, Furuya M, Hashiguchi Y, 1993. Molecular karyotype characterization of Leishmania panamensis, Leishmania mexicana, and Leishmania major-like parasites: agents of cutaneous leishmaniasis in Ecuador. Am J Trop Med Hyg 48 : 707–715. [Google Scholar]
  9. de Brujin MH, Labrada LA, Smyth AJ, Santrich C, Barker DC, 1993. A comparative study of diagnosis by the polymerase chain reaction and by current clinical methods using biopsies from Colombian patients with suspected leishmaniasis. Trop Med Parasitol 44 : 201–207. [Google Scholar]
  10. Ashford DA, Bozza M, Freire M, Miranda JC, Sherlock I, Eulalio C, Lopes U, Fernandes O, Degrave W, Barker RH Jr, Badaró R, David JR, 1995. Comparison of the polymerase chain reaction and serology for the detection of canine visceral leishmaniasis. Am J Trop Med Hyg 53 : 251–255. [Google Scholar]
  11. Laskay T, Miko TL, Negesse Y, Solbach W, Rollinghoff M, Frommel D, 1995. Detection of cutaneous Leishmania infection in paraffin-embedded skin biopsies using the polymerase chain reaction. Trans R Soc Trop Med Hyg 89 : 273–275. [Google Scholar]
  12. Mathis A, Deplazes P, 1995. PCR and in vitro cultivation for detection of Leishmania spp. in diagnostic samples from humans and dogs. J Clin Microbiol 33 : 1145–1149. [Google Scholar]
  13. Andresen K, Gaafar A, El-Hassan AM, Ismail A, Dafalla M, Theander TG, Kharazmi A, 1996. Evaluation of the polymerase chain reaction in the diagnosis of cutaneous leishmaniasis due to Leishmania major: a comparison with direct microscopy of smears and sections from lesions. Trans R Soc Trop Med Hyg 90 : 133–135. [Google Scholar]
  14. Mimori T, Sasaki J, Nakata M, Gomez EA, Uezato H, Nonaka S, Hashiguchi Y, Furuya M, Saya H, 1998. Rapid identification of Leishmania species from formalin-fixed biopsy samples by polymorphism-specific polymerase chain reaction. Gene 210 : 179–186. [Google Scholar]
  15. Uezato H, Hagiwara K, Hosokawa A, Maruno M, Nonaka S, Oshiro M, Furuya M, Gomez EA, Hashiguchi Y, 1998. A preliminary study aimed at the detection of Leishmania parasites in subjects with cutaneous leishmaniasis using polymerase chain reaction. J Dermatol 25 : 290–298. [Google Scholar]
  16. Uezato H, Hagiwara K, Hosokawa A, Maruno M, Nonaka S, Oshiro M, Nakashima Y, Furuya M, Hashiguchi Y, 1998. Comparative studies of the detection rates of Leishmania parasites from formalin, ethanol-fixed, frozen human skin specimens by polymerase chain reaction and Southern blotting. J Dermatol 25 : 623–631. [Google Scholar]
  17. Katakura K, Kawazu SI, Sanjyoba C, Naya T, Matsumoto Y, Ito M, Nagakura K, Aikawa M, Hashiguchi Y, 1998. Leishmania mini-exon genes for molecular epidemiology of leishmaniasis in China and Ecuador. Tokai J Exp Clin Med 23 : 393–399. [Google Scholar]
  18. Matsumoto T, Hashiguchi Y, Gomez EA, Calvopiña MH, Nonaka S, Saya H, Mimori T, 1999. Comparison of PCR results using scrape/exudate, syringe-sucked fluid and biopsy samples for diagnosis of cutaneous leishmaniasis in Ecuador. Trans R Soc Trop Med Hyg 93 : 606–607. [Google Scholar]
  19. Breniere SF, Telleria J, Bosseno MF, Buitrago R, Bastrenta B, Cuny G, Banuls AL, Brewster S, Barker DC, 1999. Polymerase chain reaction-based identification of New World Leishmania species complexes by specific kDNA probes. Acta Trop 73 : 283–293. [Google Scholar]
  20. Reithinger R, Lambson BE, Barker DC, Davies CR, 2000. Use of PCR to detect Leishmania (Viannia) spp. in dog blood and bone marrow. J Clin Microbiol 38 : 748–751. [Google Scholar]
  21. Reithinger R, Quinnell RJ, Alexander B, Davies CR, 2002. Rapid detection of Leishmania infantum infection in dogs: comparative study using an immunochromatographic dipstick test, enzyme-linked immunosorbent assay, and PCR. J Clin Microbiol 40 : 2352–2356. [Google Scholar]
  22. Mimori T, Matsumoto T, Calvopiña MH, Gomez EA, Saya H, Katakura K, Nonaka S, Shamsuzzaman SM, Hashiguchi Y, 2002. Usefulness of sampling with cotton swab for PCR-diagnosis of cutaneous leishmaniasis in the New World. Acta Trop 81 : 197–202. [Google Scholar]
  23. Aransay AM, Scoulica E, Tselentis Y, 2000. Detection and identification of Leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplast DNA. Appl Environ Microbiol 66 : 1933–1938. [Google Scholar]
  24. Hashiguchi Y, Gomez EA, de Coronel VV, Mimori T, Kawabata M, 1985. Leishmania isolated from wild mammals caught in endemic areas of leishmaniasis in Ecuador. Trans R Soc Trop Med Hyg 79 : 120–121. [Google Scholar]
  25. Hashiguchi Y, Gomez EA, de Coronel VV, Mimori T, Kawabata M, 1985. Natural infections with promastigotes in man-biting species of sand flies in leishmaniasis-endemic areas of Ecuador. Am J Trop Med Hyg 34 : 440–446. [Google Scholar]
  26. Hashiguchi Y, Gomez EA, 1991. A review of leishmaniasis in Ecuador. Bull Pan Am Health Organ 25 : 64–76. [Google Scholar]
  27. Hashiguchi Y, 2003. Leishmaniasis. Otsuru M, Kamegai S, Hayashi S, eds. Progress of Medical Parasitology in Japan. Tokyo: Megro Parasitological Museum, 537–553.
  28. Takaoka H, Gomez EA, Alexander JB, Hashiguchi Y, 1990. Natural infections with Leishmania promastigotes in Lutzomyia ayacuchensis (Diptera: Psychodidae) in an Andean focus of Ecuador. J Med Entomol 27 : 701–702. [Google Scholar]
  29. Hashiguchi Y, Gomez EA, de Coronel VV, Mimori T, Kawabata M, Furuya M, Nonaka S, Takaoka H, Alexander JB, Quizhpe AM, Grimaldi G Jr, Kreutzer RD, Tesh RB, 1991. Andean leishmaniasis in Ecuador caused by infection with Leishmania mexicana and L. major-like parasites. Am J Trop Med Hyg 44 : 205–217. [Google Scholar]
  30. Gomez EA, Hashiguchi Y, 1991. Monthly variation in natural infection of the sandfly Lutzomyia ayacuchensis with Leishmania mexicana in an endemic focus in the Ecuadorian Andes. Ann Trop Med Parasitol 85 : 407–411. [Google Scholar]
  31. Luyo-Acero G, Uezato H, Oshiro M, Kariya K, Katakura K, Gomez EAL, Hashiguchi Y, Nonaka S, 2004. Sequence variation of the Cytochrome b gene of various human patholgenic members of the genus Leishmania: a new approach for their identification. Parasitology 128 : 483–491. [Google Scholar]
  32. Aransay AM, Scoulica E, Chaniotis B, Tselentis Y, 1999. Typing of sandflies from Greece and Cyprus by DNA polymorphism of 18S rRNA gene. Insect Mol Biol 8 : 179–184. [Google Scholar]
  33. Aransay AM, Scoulica E, Tselentis Y, Ready PD, 2000b. Phylogenetic relationships of phlebotomine sandflies inferred from small subunit nuclear ribosomal DNA. Insect Mol Biol 9 : 157–168. [Google Scholar]
  34. Rogers WO, Wirth DF, 1988. Generation of sequence diversity in the kinetoplast DNA minicircles of Leishmania mexicana amazonensis. Mol Biochem Parasitol 30 : 1–8. [Google Scholar]
  35. Noyes HA, Reyburn H, Bailey JW, Smith D, 1998. A nested-PCR-based schizodeme method for identifying Leishmania kinetoplast minicircle classes directly from clinical samples and its application to the study of the epidemiology of Leishmania tropica in Pakistan. J Clin Microbiol 36 : 2877–2881. [Google Scholar]
  36. Brewster S, Barker DC, 2002. Analysis of minicircle classes in Leishmania (Viannia) species. Trans R Soc Trop Med Hyg 96 : S55–S63. [Google Scholar]
  37. Simpson L, 1986. Kinetoplast DNA in trypanosomid flagellates. Int Rev Cytol 99 : 119–179. [Google Scholar]

Data & Media loading...

  • Received : 28 Apr 2004
  • Accepted : 26 Aug 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error