Volume 72, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Intensity profiles for helminths are used to describe population infection status, monitor effectiveness of control programs, and provide accurate data to validate transmission models. This study aims to accurately predict age/gender specific intensity profiles of endemic schistosomiasis japonica infection in the Philippines. Poor sensitivity of the Kato-Katz test and large heterogeneity in infection levels across villages complicate these predictions. Data from 1,989 individuals living in three endemic villages were analyzed with a Bayesian cumulative-logit model adjusting for nonproportional odds, variation between villages, and measurement error. The posterior uncertainty regarding the proportion of individuals in each egg category was high compared with that estimated using a model ignoring measurement error and villages’ heterogeneity. The intensity profiles were very different in children less than 7 years old compared with older children and adults. This model could easily be adapted to other parasitic infections or outcomes where an analysis by category would be recommended.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Ross AG, Yuesheng L, Sleigh AS, Yi L, Williams GM, Wu WZ, Xinsong L, Yongkang H, McManus DP, 1997. Epidemiologic features of Schistosoma japonicum among fishermen and other occupational groups in the Dongting Lake region (Hunan Province) of China. Am J Trop Med Hyg 57 : 302–308. [Google Scholar]
  2. Zhou X, Acosta L, Willingham AL III, Leonardo LR, Minggang C, Aligui G, Zheng F, Olveda R, 2002. Regional Network for Research, Surveillance and Control of Asian Schistosomiasis (RNAS). Acta Trop 82 : 305–311. [Google Scholar]
  3. Chitsulo L, Engels D, Montresor A, Savioli L, 2000. The global status of schistosomiasis and its control. Acta Trop 77 : 41–51. [Google Scholar]
  4. Leonardo RL, Acosta LP, Olveda RM, Aligui GDL, 2002. Difficulties and strategies in the control of schistosomiasis in the Philippines. Acta Trop 82 : 295–299. [Google Scholar]
  5. Blas BL, Tormis LG, Portillo LA. The schistosomiasis control component of the national system improvement project in Leyte, Philippines. Part III. An attempt to study the economic loss arising from Schistosoma japonicum infection. Proceedings of SEAMEO-TROPMED seminar. 13–16 June 1988. Surat Thani, Thailand.
  6. Wu X-H, Wang T-P, Lu D-B, Hu H-T, Gao Z-B, Zhu C-G, Fang G-R, He Y-C, Mei Q-J, Wu W-D, Ge J-H, Zheng J, 2002. Studies of impact on physical fitness and working capacity of patients with advanced Schistosoma japonica in Susing County, Anhui Province. Acta Trop 82 : 247–252. [Google Scholar]
  7. McGarvey ST, 2000. Schistosomiasis: impact on childhood and adolescent growth, malnutrition, and morbidity. Sem Pediatr Infect Dis 11 : 269–274. [Google Scholar]
  8. He YX, Salafsky B, Ramaswamy K, 2001. Host-parasite relationships of Schistosoma japonicum in mammalian hosts. Trends Parasitol 17 : 320–324. [Google Scholar]
  9. Aligui GL, 1997. Quantifying Human Schistosoma japonicum Infection and Exposure: Errors in Field Diagnosis and Uncertainties in Exposure Measurements. PhD Thesis. Brown University, RI.
  10. Yu JM, de Vlas SJ, Yuan HC, Gryseels B, 1998. Variations in fecal Schistosoma japonicum egg counts. Am J Trop Med Hyg 59 : 370–375. [Google Scholar]
  11. Blas BL, Bautista ES, Lipayon IL, 1990. An Atlas on the Endemicity of Schistosomiasis japonica in The Philippines. Manila, The Philippines: Schistosomiasis Control Service, Department of Health.
  12. Olds GR, Olveda R, Wu G, Wiest P, McGarvey S, Aligui G, Zhang S, Ramirez B, Daniel B, Peters P, Romulo R, Fevidal P, Tiu W, Yuan J, Domingo E, Blas B, 1996. Immunity and morbidity in schistosomiasis japonicum infection. Am J Trop Med Hyg 55 (5 Suppl): 121–126. [Google Scholar]
  13. Anderson RM, May RM, 1989. Indirectly transmitted helminths. Anderson RM, May RM, eds. Infectious Diseases of Humans: Dynamics and Control. Oxford, UK: Oxford University Press, 550–589.
  14. Neuhaus JM, 1999. Bias and efficiency loss due to misclassified responses in binary regression. Biometrika 86 : 843–855. [Google Scholar]
  15. Paulino CD, Soares P, Neuhaus J, 2003. Binomial regression with misclassification. Biometrics 59 : 670–675. [Google Scholar]
  16. McGarvey ST. 2002. NIH-funded “Ecology and transmission of Schistosomiasis japonica in the Philippines” project. Ecology and Transmission of Schistosomiasis in the Philippines. Proceedings of a Stake Holders Meeting on an NIH-Supported Research Project. Tacloban, Leyte, Philippines. 18–20 October 2001. Geneva: World Health Organization.
  17. Olveda RM, Daniel BL, Ramirez BD, Aligui GD, Acosta LP, Fevidal P, Tiu E, de Veyra F, Peters PA, Romulo R, Domingo E, Wiest PM, Olds GR, 1996. Schistosomiasis japonica in the Philippines: the long-term impact of population-based chemotherapy on infection, transmission, and morbidity. J Infect Dis 174 : 163–172. [Google Scholar]
  18. Montresor A, Crompton DWT, Bundy DAP, Savioli L, 1998. Guidelines for the Evaluation of Soil-Transmitted Helminthiasis and Schistosomiasis at Community Level. A Guide for Managers of Control Programmes. Geneva: World Health Organization. WHO/CTD/SIP/98.1.
  19. Ye XP, Donnelly CA, Anderson RM, Fu YL, Agnew A, 1998. The distribution of Schistosoma japonicum eggs in faeces and the effect of stirring faecal specimens. Ann Trop Med Parasitol 92 : 181–185. [Google Scholar]
  20. Ananth CV, Kleinbaum DG, 1997. Regression models for ordinal responses: a review of methods and applications. Int J Epidemiol 26 : 1323–1333. [Google Scholar]
  21. Agresti A, Natarajan R, 2001. Modeling clustered ordinal categorical data: a survey. Int Stat Rev 69 : 345–371. [Google Scholar]
  22. Lunn DJ, Wakefield J, Racine-Poon A, 2001. Cumulative logit models for ordinal data: a case study involving allergic rhinitis severity scores. Stat Med 20 : 2261–2285. [Google Scholar]
  23. Rubin DB, 1987. Multiple Imputation for Non-Response Survey. New York: John Wiley & Sons.
  24. Spiegelhalter DJ, Freedman LS, Parmar MKB, 1994. Bayesian approaches to randomized trials. J R Stat Soc Ser A Stat Soc 157 : 357–416. [Google Scholar]
  25. Gilks W, Spiegelhalter DJ, Richardson SR, 1996. Markov Chain Monte Carlo in Practice. London: Chapman and Hall.
  26. Spiegelhalter DJ, Thomas A, Best NG, 2000. WinBUGS version 1.3. Available at http://www.mrc-bsu.cam.ac.uk/bugs/.
  27. McGarvey S, Zhou XN, Willingham AL, Feng Z, Olveda R, 1999. The epidemiology and host-parasite relationships of Schistosoma japonicum in definitive hosts. Parasitol Today 15 : 214–215. [Google Scholar]
  28. Joseph L, Gyorkos TW, Coupal L, 1995. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 141 : 263–272. [Google Scholar]
  29. Hubbard A, Liang S, Maszle D, Qiu D, Gu X, Spear RC, 2002. Estimating the distribution of worm burden and egg excretion of Schistosoma japonicum by risk group in Sichuan Province, China. Parasitology 125 : 221–231. [Google Scholar]
  30. Pouedet MS, Zoli AP, Nguekam JP, Vondou L, Assana E, Speybroeck N, Berkvens D, Dorny P, Brandt J, Geerts S, 2002. Epidemiological survey of swine cysticercosis in two rural communities of West-Cameroon. Vet Parasitol 106 : 45–54. [Google Scholar]
  31. Frossling J, Bonnett B, Lindberg A, Bjorkman C, 2003. Validation of a Neospora caninum iscom ELISA without a gold standard. Prev Vet Med 57 : 141–153. [Google Scholar]
  32. Workshop WHO, 1980. Quantitative aspects of the epidemiology of Schistosoma japonicum infection in a rural community of Luzon, Philippines. Bull World Health Organ 58 : 629–638. [Google Scholar]
  33. McGarvey ST, Aligui G, Daniel B, Peters P, Olveda R, Olds GR, 1992. Child growth and schistosomiasis japonica in Northeastern Leyte, The Philippines: cross-sectional results. Am J Trop Med Hyg 46 : 571–581. [Google Scholar]
  34. Tiglao TV, Camacho AC, 1983. Water contact behaviour among humans in Leyte, Philippines. Southeast Asian J Trop Med Public Health 14 : 18–24. [Google Scholar]
  35. Li Y, Sleigh AC, Williams GM, Ross AGP, Li Y, Forsyth SJ, Tanner M, McManus DP, 2000. Measuring exposure to Schistosoma japonicum in China. III. Activity diaries, snail and human infection, transmission ecology and options for control. Acta Trop 75 : 279–289. [Google Scholar]
  36. McGarvey ST, Aligui G, Kurtis JD, Willingham AL III, Carabin H, Olveda R, 2004. Multidisciplinary perspectives on Schistosoma japonicum. In Mascie-Taylor N, Peters J, McGarvey ST, eds. The Changing Face of Disease: Implications for Society. New York: Taylor & Francis, 114–129.
  37. Engels D, Sinzinkayo E, Gryseels B, 1996. Day-to-day egg count fluctuation in Schistosoma mansoni infection and its operational implications. Am J Trop Med Hyg 54 : 319–324. [Google Scholar]

Data & Media loading...

  • Received : 13 Apr 2004
  • Accepted : 21 Jul 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error