Volume 72, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Malaria parasite proteins involved in erythrocyte invasion are considered important vaccine targets. Members of the reticulocyte binding-like () family of merozoite proteins are found in human, simian, and rodent malaria parasites and function in the initial steps of erythrocyte selection and invasion. The genes are large, ranging in size from 7.7 to 10 kb, and the extent of any sequence diversity in parasite populations is unknown. We present the first assessment of sequence diversity within genes from the two major human malaria parasites: and . Polymorphism within the genes is generally limited, except for reticulocyte binding protein 2 (PvRBP2), which has nucleotide diversity levels 25-fold higher than the other genes. The PvRBP2 haplotypes appear to fall into two distinct classes of alleles, suggesting large-scale dimorphism in this gene. Polymorphisms were frequently clustered, suggesting that different domains may be evolving under different selection and functional pressures.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Breman JG, 2001. The ears of the hippopotamus: Manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64 (1–2 Suppl): 1–11. [Google Scholar]
  2. Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 (1–2 Suppl): 97–106. [Google Scholar]
  3. Kitchen SK, 1938. The infection of reticulocytes by Plasmodium vivax. Am J Trop Med 18 : 347–353. [Google Scholar]
  4. Pasvol G, Weatherall DJ, Wilson RJ, 1980. The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. Br J Haematol 45 : 285–295. [Google Scholar]
  5. Mitchell GH, Hadley TJ, McGinniss MH, Klotz FW, Miller LH, 1986. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors. Blood 67 : 1519–1521. [Google Scholar]
  6. Wertheimer SP, Barnwell JW, 1989. Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol 69 : 340–350. [Google Scholar]
  7. Adams JH, Sim BKL, Dolan SA, Fang X, Kaslow DC, Miller LH, 1992. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci USA 89 : 7085–7089. [Google Scholar]
  8. Chaudhuri A, Polyakova J, Zbrzezna V, Williams K, Gulati S, Pogo AO, 1993. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc Natl Acad Sci USA 90 : 10793–10797. [Google Scholar]
  9. Sim BK, Chitnis CE, Wasniowska K, Hadley TJ, Miller LH, 1994. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264 : 1941–1944. [Google Scholar]
  10. Peterson MG, Marshall VM, Smythe JA, Crewther PE, Lew A, Silva A, Anders RF, Kemp DJ, 1989. Integral membrane protein located in the apical complex of Plasmodium falciparum. Mol Cell Biol 9 : 3151–3154. [Google Scholar]
  11. Waters AP, Thomas AW, Deans JA, Mitchell GH, Hudson DE, Miller LH, McCutchan TF, Cohen S, 1990. A merozoite receptor protein from Plasmodium knowlesi is highly conserved and distributed throughout Plasmodium. J Biol Chem 265 : 17974–17979. [Google Scholar]
  12. Mitchell GH, Thomas AW, Margos G, Dluzewski AR, Bannister LH, 2004. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infect Immun 72 : 154–158. [Google Scholar]
  13. Binks RH, Baum J, Oduola AMJ, Arnot DE, Babiker HA, Kremsner PG, Roper C, Greenwood BM, Conway DJ, 2001. Population genetic analysis of the Plasmodium falciparum erythrocyte binding antigen-175 (eba-175) gene. Mol Biochem Parasitol 114 : 63–70. [Google Scholar]
  14. Baum J, Thomas AW, Conway DJ, 2003. Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax.. Genetics 163 : 1327–1336. [Google Scholar]
  15. Cole-Tobian J, King CL, 2003. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol 127 : 121–132. [Google Scholar]
  16. Galinski MR, Corredor-Medina C, Ingravallo P, Barnwell JW, 1992. A reticulocyte binding protein complex of Plasmodium vivax merozoites. Cell 69 : 1213–1226. [Google Scholar]
  17. Keen JK, Sinha KA, Brown KA, Holder AA, 1994. A gene coding for a high-molecular mass rhoptry protein of Plasmodium yoelii. Mol Biochem Parasitol 65 : 171–177. [Google Scholar]
  18. Rayner JC, Galinski MR, Ingravallo P, Barnwell JW, 2000. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci USA 97 : 9648–9653. [Google Scholar]
  19. Rayner JC, Huber CS, Galinski MR, Barnwell JW, 2003. Rapid evolution of an erythroycte gene family: the Plasmodium reichenowi reticulocyte binding like (RBL) genes. Mol Biochem Parasitol 133 : 287–296. [Google Scholar]
  20. Galinski MR, Barnwell JW, 1996. Plasmodium vivax: merozoites, invasion of reticulocytes and considerations for malaria vaccine development. Parasitol Today 12 : 20–29. [Google Scholar]
  21. Galinski MR, Xu M, Barnwell JW, 2000. Plasmodium vivax reticulocyte binding protein 2 (PvRBP2) shares structural features with PvRBP1 and the Plasmodium yoelii 235kDa rhoptry protein family. Mol Biochem Parasitol 108 : 257–262. [Google Scholar]
  22. Triglia T, Thompson J, Caruana SR, Delorenzi M, Speed T, Cowman AF, 2001. Identification of proteins from Plasmodium falciparum that are homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun 69 : 1084–1092. [Google Scholar]
  23. Rayner JC, Vargas-Serrato E, Huber CS, Galinski MR, Barnwell JW, 2001. A Plasmodium falciparum homologue of Plasmodium vivax reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion pathway. J Exp Med 194 : 1571–1581. [Google Scholar]
  24. Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, Cowman AF, 2003. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J 22 : 1047–1057. [Google Scholar]
  25. Trager W, Jensen JB, 1978. Human malaria parasites in continuous culture. Science 193 : 673–675. [Google Scholar]
  26. Collins WE, Sattabongkot J, Wirtz RA, Skinner JC, Broderson JR, Millet PG, Morris CL, Richardson BB, Sullivan J, Filipski VK, 1992. Development of a polymorphic strain of Plasmodium vivax in monkeys. J Parasitol 78 : 485–491. [Google Scholar]
  27. Collins WE, Contacos PG, Krotoski WA, Howard WA, 1972. Transmission of four Central American strains of Plasmodium vivax from monkey to man. J Parasitol 58 : 332–335. [Google Scholar]
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, 1994. Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24 : 4876–4882. [Google Scholar]
  29. Nicholas KB, Nicholas HB Jr., Deerfield DW II, 1997. GeneDoc: analysis and visualization of genetic variation. EMBNEW News 14 : 4. [Google Scholar]
  30. Rozas J, Rozas R, 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15 : 174–175. [Google Scholar]
  31. Kumar S, Tamura K, Jakobsen IB, Nei M, 2001. MEGA2: Molecular Evolutionary Genetics Analaysis software. Bioinformatics 17 : 1244–1245. [Google Scholar]
  32. Rich SM, Licht MC, Hudson RR, Ayala FJ, 1998. Malaria’s Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc Natl Acad Sci USA 95 : 4425–4430. [Google Scholar]
  33. Taylor HM, Grainger M, Holder AA, 2002. Variation in the expression of a Plasmodium falciparum protein family implicated in erythrocyte invasion. Infect Immun 70 : 5779–5789. [Google Scholar]
  34. Feng X, Carlton JM, Joy DA, Mu J, Furuya T, Suh BB, Wang Y, Barnwell JW, Su XZ, 2003. Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc Natl Acad Sci USA 100 : 8502–8507. [Google Scholar]
  35. McDonald JH, Kreitman M, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351 : 652–654. [Google Scholar]
  36. Escalante AA, Lal AA, Ayala FJ, 1998. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149 : 189–202. [Google Scholar]
  37. Polley SD, Conway DJ, 2001. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics 158 : 1505–1512. [Google Scholar]
  38. Escalante AA, Grebert HM, Cahiyaroj SC, Magris M, Biswas S, Nahlen BL, Lal AA, 2001. Polymorphism in the gene encoding the apical membrane antigen-1 (AMA-1) of Plasmodium falciparum. X. Asembo Bay Cohort Project. Mol Biochem Parasitol 113 : 279–287. [Google Scholar]
  39. Figtree M, Pasay CJ, Slade R, Cheng Q, Cloonan N, Walker J, Saul A, 2000. Plasmodium vivax synonymous substitution frequencies, evolution and population structure deduced from diversity in AMA1 and MSP1 genes. Mol Biochem Parasitol 108 : 53–66. [Google Scholar]
  40. Tanabe K, MacKay M, Goman M, Scaife JG, 1987. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J Mol Biol 195 : 273–287. [Google Scholar]
  41. Gibson HL, Tucker JE, Kaslow DC, Krettli AU, Collins WE, Kiefer MC, Bathurst IC, Barr PJ, 1992. Structure and expression of the gene for Pv200, a major blood-stage surface antigen of Plasmodium vivax. Mol Biochem Parasitol 50 : 325–333. [Google Scholar]
  42. Cheng Q, Stowers A, Huang TU, Bustos D, Huang YM, Rzepczyk C, Saul A, 1993. Polymorphism in Plasmodium vivax MSA1 gene—the result of intragenic recombinations? Parasitology 106 : 335–345. [Google Scholar]
  43. Nielsen KM, Kasper J, Choi M, Bedford T, Kristiansen K, Wirth DF, Volkman SK, Lozovsky ER, Hartl DL, 2003. Gene conversion as a source of nucleotide diversity in Plasmodium falciparum. Mol Biol Evol 20 : 726–734. [Google Scholar]

Data & Media loading...

  • Received : 28 May 2004
  • Accepted : 29 Nov 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error