1921
Volume 72, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Malaria parasite proteins involved in erythrocyte invasion are considered important vaccine targets. Members of the reticulocyte binding-like () family of merozoite proteins are found in human, simian, and rodent malaria parasites and function in the initial steps of erythrocyte selection and invasion. The genes are large, ranging in size from 7.7 to 10 kb, and the extent of any sequence diversity in parasite populations is unknown. We present the first assessment of sequence diversity within genes from the two major human malaria parasites: and . Polymorphism within the genes is generally limited, except for reticulocyte binding protein 2 (PvRBP2), which has nucleotide diversity levels 25-fold higher than the other genes. The PvRBP2 haplotypes appear to fall into two distinct classes of alleles, suggesting large-scale dimorphism in this gene. Polymorphisms were frequently clustered, suggesting that different domains may be evolving under different selection and functional pressures.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2005.72.666
2005-06-01
2017-07-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/72/6/0720666.html?itemId=/content/journals/10.4269/ajtmh.2005.72.666&mimeType=html&fmt=ahah

References

  1. Breman JG, 2001. The ears of the hippopotamus: Manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64 (1–2 Suppl): 1–11.
  2. Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 (1–2 Suppl): 97–106.
  3. Kitchen SK, 1938. The infection of reticulocytes by Plasmodium vivax. Am J Trop Med 18 : 347–353.
  4. Pasvol G, Weatherall DJ, Wilson RJ, 1980. The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. Br J Haematol 45 : 285–295.
  5. Mitchell GH, Hadley TJ, McGinniss MH, Klotz FW, Miller LH, 1986. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors. Blood 67 : 1519–1521.
  6. Wertheimer SP, Barnwell JW, 1989. Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol 69 : 340–350.
  7. Adams JH, Sim BKL, Dolan SA, Fang X, Kaslow DC, Miller LH, 1992. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci USA 89 : 7085–7089.
  8. Chaudhuri A, Polyakova J, Zbrzezna V, Williams K, Gulati S, Pogo AO, 1993. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc Natl Acad Sci USA 90 : 10793–10797.
  9. Sim BK, Chitnis CE, Wasniowska K, Hadley TJ, Miller LH, 1994. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264 : 1941–1944.
  10. Peterson MG, Marshall VM, Smythe JA, Crewther PE, Lew A, Silva A, Anders RF, Kemp DJ, 1989. Integral membrane protein located in the apical complex of Plasmodium falciparum. Mol Cell Biol 9 : 3151–3154.
  11. Waters AP, Thomas AW, Deans JA, Mitchell GH, Hudson DE, Miller LH, McCutchan TF, Cohen S, 1990. A merozoite receptor protein from Plasmodium knowlesi is highly conserved and distributed throughout Plasmodium. J Biol Chem 265 : 17974–17979.
  12. Mitchell GH, Thomas AW, Margos G, Dluzewski AR, Bannister LH, 2004. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infect Immun 72 : 154–158.
  13. Binks RH, Baum J, Oduola AMJ, Arnot DE, Babiker HA, Kremsner PG, Roper C, Greenwood BM, Conway DJ, 2001. Population genetic analysis of the Plasmodium falciparum erythrocyte binding antigen-175 (eba-175) gene. Mol Biochem Parasitol 114 : 63–70.
  14. Baum J, Thomas AW, Conway DJ, 2003. Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax.. Genetics 163 : 1327–1336.
  15. Cole-Tobian J, King CL, 2003. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol 127 : 121–132.
  16. Galinski MR, Corredor-Medina C, Ingravallo P, Barnwell JW, 1992. A reticulocyte binding protein complex of Plasmodium vivax merozoites. Cell 69 : 1213–1226.
  17. Keen JK, Sinha KA, Brown KA, Holder AA, 1994. A gene coding for a high-molecular mass rhoptry protein of Plasmodium yoelii. Mol Biochem Parasitol 65 : 171–177.
  18. Rayner JC, Galinski MR, Ingravallo P, Barnwell JW, 2000. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci USA 97 : 9648–9653.
  19. Rayner JC, Huber CS, Galinski MR, Barnwell JW, 2003. Rapid evolution of an erythroycte gene family: the Plasmodium reichenowi reticulocyte binding like (RBL) genes. Mol Biochem Parasitol 133 : 287–296.
  20. Galinski MR, Barnwell JW, 1996. Plasmodium vivax: merozoites, invasion of reticulocytes and considerations for malaria vaccine development. Parasitol Today 12 : 20–29.
  21. Galinski MR, Xu M, Barnwell JW, 2000. Plasmodium vivax reticulocyte binding protein 2 (PvRBP2) shares structural features with PvRBP1 and the Plasmodium yoelii 235kDa rhoptry protein family. Mol Biochem Parasitol 108 : 257–262.
  22. Triglia T, Thompson J, Caruana SR, Delorenzi M, Speed T, Cowman AF, 2001. Identification of proteins from Plasmodium falciparum that are homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun 69 : 1084–1092.
  23. Rayner JC, Vargas-Serrato E, Huber CS, Galinski MR, Barnwell JW, 2001. A Plasmodium falciparum homologue of Plasmodium vivax reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion pathway. J Exp Med 194 : 1571–1581.
  24. Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, Cowman AF, 2003. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J 22 : 1047–1057.
  25. Trager W, Jensen JB, 1978. Human malaria parasites in continuous culture. Science 193 : 673–675.
  26. Collins WE, Sattabongkot J, Wirtz RA, Skinner JC, Broderson JR, Millet PG, Morris CL, Richardson BB, Sullivan J, Filipski VK, 1992. Development of a polymorphic strain of Plasmodium vivax in monkeys. J Parasitol 78 : 485–491.
  27. Collins WE, Contacos PG, Krotoski WA, Howard WA, 1972. Transmission of four Central American strains of Plasmodium vivax from monkey to man. J Parasitol 58 : 332–335.
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, 1994. Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24 : 4876–4882.
  29. Nicholas KB, Nicholas HB Jr., Deerfield DW II, 1997. GeneDoc: analysis and visualization of genetic variation. EMBNEW News 14 : 4.
  30. Rozas J, Rozas R, 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15 : 174–175.
  31. Kumar S, Tamura K, Jakobsen IB, Nei M, 2001. MEGA2: Molecular Evolutionary Genetics Analaysis software. Bioinformatics 17 : 1244–1245.
  32. Rich SM, Licht MC, Hudson RR, Ayala FJ, 1998. Malaria’s Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc Natl Acad Sci USA 95 : 4425–4430.
  33. Taylor HM, Grainger M, Holder AA, 2002. Variation in the expression of a Plasmodium falciparum protein family implicated in erythrocyte invasion. Infect Immun 70 : 5779–5789.
  34. Feng X, Carlton JM, Joy DA, Mu J, Furuya T, Suh BB, Wang Y, Barnwell JW, Su XZ, 2003. Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc Natl Acad Sci USA 100 : 8502–8507.
  35. McDonald JH, Kreitman M, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351 : 652–654.
  36. Escalante AA, Lal AA, Ayala FJ, 1998. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149 : 189–202.
  37. Polley SD, Conway DJ, 2001. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics 158 : 1505–1512.
  38. Escalante AA, Grebert HM, Cahiyaroj SC, Magris M, Biswas S, Nahlen BL, Lal AA, 2001. Polymorphism in the gene encoding the apical membrane antigen-1 (AMA-1) of Plasmodium falciparum. X. Asembo Bay Cohort Project. Mol Biochem Parasitol 113 : 279–287.
  39. Figtree M, Pasay CJ, Slade R, Cheng Q, Cloonan N, Walker J, Saul A, 2000. Plasmodium vivax synonymous substitution frequencies, evolution and population structure deduced from diversity in AMA1 and MSP1 genes. Mol Biochem Parasitol 108 : 53–66.
  40. Tanabe K, MacKay M, Goman M, Scaife JG, 1987. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J Mol Biol 195 : 273–287.
  41. Gibson HL, Tucker JE, Kaslow DC, Krettli AU, Collins WE, Kiefer MC, Bathurst IC, Barr PJ, 1992. Structure and expression of the gene for Pv200, a major blood-stage surface antigen of Plasmodium vivax. Mol Biochem Parasitol 50 : 325–333.
  42. Cheng Q, Stowers A, Huang TU, Bustos D, Huang YM, Rzepczyk C, Saul A, 1993. Polymorphism in Plasmodium vivax MSA1 gene—the result of intragenic recombinations? Parasitology 106 : 335–345.
  43. Nielsen KM, Kasper J, Choi M, Bedford T, Kristiansen K, Wirth DF, Volkman SK, Lozovsky ER, Hartl DL, 2003. Gene conversion as a source of nucleotide diversity in Plasmodium falciparum. Mol Biol Evol 20 : 726–734.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2005.72.666
Loading
/content/journals/10.4269/ajtmh.2005.72.666
Loading

Data & Media loading...

  • Received : 28 May 2004
  • Accepted : 29 Nov 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error