Volume 72, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


A hierarchical population genetic study was conducted among 19 populations in Thailand from Chiang Mai in the north to Songkhla province in the south. Single-strand conformation polymorphism analysis was used to examine variation in a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial DNA gene (ND4). Seven haplotypes were detected in two lineages previously identified in ND4 haplotypes from North America. Gene flow estimates and highly significant variation among populations within 25 kilometers implicated genetic drift and vector control efforts as major factors in genetic structure. Mantel regression analysis demonstrated no isolation by distance. Urban areas were relatively panmictic, while suburban/rural sites exhibited more restricted gene flow. Significant genetic structure among groups of collections > 100 kilometers apart is consistent with recent (~50 year) expansion of from highly populated areas accompanied by founder effects, but could also reflect the overall low genetic diversity in ND4 in Thailand.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Monath TP, 1994. Dengue: the risk to developed and developing countries. Proc Natl Acad Sci U S A 91 : 2395–2400. [Google Scholar]
  2. Gubler DJ, 1997. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. Gubler DJ, Kino G, eds. Dengue and Dengue Hemorrhagic Fever. New York: CAB International, 1–23.
  3. Theobald FV, 1907. A Monograph of the Culicidae of the World. Volume IV. London: British Museum, 177.
  4. Causey OR, 1937. Some anopheline and culicine mosquitoes of Siam with remarks on malaria control in Bangkok. Am J Hyg 25 : 400–420. [Google Scholar]
  5. Scanlon JE, 1965. The distribution of Aedes aegypti in Thailand. Mosq News 25 : 199–203. [Google Scholar]
  6. Tabachnik WJ, 1991. Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. Am Entomol 37 : 14–24. [Google Scholar]
  7. Tabachnik WJ, Powell JR, 1979. A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet Res 34 : 215–229. [Google Scholar]
  8. Wallis GP, Tabachnik WJ, Powell JR, 1983. Macrogeographic genetic variation in human commensal: Aedes aegypti, the yellow fever mosquito. Genet Res 41 : 241–258. [Google Scholar]
  9. Failloux A-B, Fouque F, Vazeille M, Rodhain F, 2002. Isoenzyme differentiation of Aedes aegypti populations in French Guiana. Med Vet Entomol 16 : 456–460. [Google Scholar]
  10. Mousson L, Vazeille M, Chawprom S, Prajakwong S, Rodhain F, Failloux A-B, 2002. Genetic structure of Aedes aegypti populations in Chiang Mai (Thailand) and relation with dengue transmission. Trop Med Int Health 7 : 865–872. [Google Scholar]
  11. Apostol GL, Black WC IV, Reiter P, Miller BR, 1996. Population genetics with RAPD-PCR markers: the breeding structure of Aedes aegypti in Puerto Rico. Heredity 76 : 325–334. [Google Scholar]
  12. García-Franco F, Muñoz ML, Lozano-Fuentes S, Fernandez-Salas I, Garcia-Rejon J, Beaty BJ, Black WC IV, 2002. Large genetic distances among Aedes aegypti populations along the south Pacific coast of Mexico. Am J Trop Med Hyg 67 : 594–598. [Google Scholar]
  13. Ravel S, Herve J-P, Diarrassouba S, Kone A, Cuny G, 2002. Microsatellite markers for population genetic studies in Aedes aegypti (Diptera: Culicidae) from Côte d’Ivoire: Evidence for a microgeographic genetic differentiation of mosquitoes from Bouake. Acta Trop 82 : 39–49. [Google Scholar]
  14. Huber K, Le Loan L, Hoang TH, Ravel S, Rodhain F, Failloux A-B, 2002. Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers. Mol Ecol 11 : 1629–1635. [Google Scholar]
  15. Yan G, Romero-Severson J, Walton M, Chadee DD, Severson DW, 1999. Population genetics of the yellow fever mosquito in Trinidad: comparisons of amplified fragment length polymorphisms (AFLP) and restriction fragment length polymorphism (RFLP) markers. Mol Ecol 8 : 951–963. [Google Scholar]
  16. Gorrochotegui-Escalante N, Muñoz ML, Fernandez-Salas I, Beaty BJ, Black WC IV, 2000. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am J Trop Med Hyg 62 : 200–209. [Google Scholar]
  17. Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, Muñoz ML, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC IV, 2002. The breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66 : 213–222. [Google Scholar]
  18. Wright S, 1978. Evolution and the Genetics of Populations. IV. Variability Within and Among Natural Populations. Chicago: University of Chicago Press.
  19. Black WC IV, DuTeau NM, 1997. RAPD-PCR and SSCP analysis for insect population genetic studies. Crampton J, Beard CB, Louis C, eds. The Molecular Biology of Insect Disease Vectors: A Methods Manual. New York: Chapman and Hall, 361–373.
  20. Hayashi K, 1991. PCR-SSCP: A simple and sensitive method for detection of mutations in genomic DNA. PCR Methods Appl 1 : 34–38. [Google Scholar]
  21. Hiss RH, Norris DE, Dietrich CH, Whitcomb RF, West DF, Bosio CF, Kambhampati S, Piesman J, Antolin MF, Black WC IV, 1994. Molecular taxonomy using single-strand conformation polymorphism (SSCP) analysis of mitochondrial ribosomal DNA genes. Insect Mol Biol 3 : 171–182. [Google Scholar]
  22. Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 : 479–491. [Google Scholar]
  23. Schneider S, Roessli D, Excoffier L, 2000. ARLEQUIN, Version 2.000: A Software for Population Genetic Data Analysis. Geneva: Genetics and Biometry Laboratory, University of Geneva.
  24. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 : 2496–2497. [Google Scholar]
  25. Tajima F, 1983. Evolutionary Relationship of DNA sequences in finite populations. Genetics 105 : 437–460. [Google Scholar]
  26. Nei M, 1987. Molecular Evolutionary Genetics. New York: Columbia University Press.
  27. Lynch M, Crease TJ, 1990. The analysis of population survey data on DNA sequence variation. Mol Biol Evol 7 : 377–394. [Google Scholar]
  28. Hudson RR, Slatkin M, Maddison WP, 1992. Estimation of levels of gene flow from DNA sequence data. Genetics 132 : 583–589. [Google Scholar]
  29. Slatkin M, 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47 : 264–279. [Google Scholar]
  30. Rousset F, 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145 : 1219–1228. [Google Scholar]
  31. Mantel N, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27 : 209–220. [Google Scholar]
  32. Sokal RR, Sneath PHA, 1963. Principles of Numerical Taxonomy. San Francisco: W. H. Freeman.
  33. Felsenstein J, 1993. PHYLIP, Phylogeny Inference Package. Version 3.5c. Seattle, WA: University of Washington.
  34. Tamura K, Nei M, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol 10 : 512–526. [Google Scholar]
  35. Saitou N, Nei M, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 : 406–425. [Google Scholar]
  36. Clement M, Posada D, Crandall KA, 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9 : 1657–1660. [Google Scholar]
  37. Posada D, Crandall KA, 2001. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16 : 37–45. [Google Scholar]
  38. Conn JE, Rosa-Freitas MG, Luz SLB, Momen H, 1999. Molecular population genetics of the primary neotropical malaria vector Anopheles darlingi using mtDNA. J Am Mosquito Control Assoc 15 : 468–474. [Google Scholar]
  39. Krasfur ES, Madsen M, Wohlford DL, Mihok S, Griffiths NT, 2000. Population genetics of Glossina morsitans submorsitans (Diptera: Glossinidae). Bull Entomol Res 90 : 329–335. [Google Scholar]
  40. Avise JC, Neigel JE, Arnold J, 1984. Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20 : 99–105. [Google Scholar]
  41. Lerdthusnee K, Chareonviriyaphap T, 1999. Comparison of isozyme patterns of Aedes aegypti populations collected from pre- and post-Bacillus thuringiensis israelensis treatment sites in Thailand. J Am Mosquito Control Assoc 15 : 48–52. [Google Scholar]
  42. Apostol GL, Black WC IV, Reiter P, Miller BR, 1994. Use of randomly amplified polymorphic DNA amplified by polymerization chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. Am J Trop Med Hyg 51 : 89–97. [Google Scholar]
  43. Edman JD, Scott TW, Costero A, Morrison AC, Harrington LC, Clark GG, 1998. Aedes aegypti (Diptera: Culicidae) movement influenced by the availability of oviposition sites. J Med Entomol 35 : 578–583. [Google Scholar]
  44. Lenormand T, Guillemaud T, Bourguet D, Raymond M, 1998. Evaluating gene flow using selected markers: a case study. Genetics 149 : 1383–1392. [Google Scholar]
  45. Pasteur N, Marquine M, Rousset F, Failloux A-B, Chevillon C, Raymond M, 1995. The role of passive migration in the dispersal of resistance genes in Culex pipiens quinquefasciatus from French Polynesia. Genel Res 66 : 139–146. [Google Scholar]

Data & Media loading...

  • Received : 03 Feb 2004
  • Accepted : 05 Aug 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error