Volume 72, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Epizootic strains of Venezuelan equine encephalitis virus (VEEV) cause epidemics by exploiting equines as highly efficient amplification hosts for mosquito transmission. Although phylogenetic studies indicate that epizootic VEEV strains emerge via mutation from enzootic progenitors that are incapable of efficient equine amplification, the molecular mechanism(s) involved remain enigmatic. The convergent evolution of E2 envelope glycoprotein mutations suggests that they are critical to VEEV emergence, but little is known about the role of non-envelope genes. We used the guinea pig, the small animal model that best predicts the ability to generate equine viremia, to assess the role of envelope versus other mutations in the epizootic phenotype. Using reciprocal chimeric viruses generated by swapping the envelope genes of closely related epizootic IC and enzootic ID strains, infections of guinea pigs demonstrated that envelope and non-envelope genes and sequences both contributed to virulence. However, early replication in lymphoid tissues appeared to be primarily envelope dependent.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Kinney RM, Johnson BJ, Welch JB, Tsuchiya KR, Trent DW, 1989. The full-length nucleotide sequences of the virulent Trinidad donkey strain of Venezuelan equine encephalitis virus and its attenuated vaccine derivative, strain TC-83. Virology 170 : 19–30. [Google Scholar]
  2. Strauss JH, Strauss EG, 1994. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58 : 491–562. [Google Scholar]
  3. Young NA, Johnson KM, 1969. Antigenic variants of Venezuelan equine encephalitis virus: their geographic distribution and epidemiologic significance. Am J Epidemiol 89 : 286–307. [Google Scholar]
  4. Rico-Hesse R, Weaver SC, de Siger J, Medina G, Salas RA, 1995. Emergence of a new epidemic/epizootic Venezuelan equine encephalitis virus in South America. Proc Natl Acad Sci U S A 92 : 5278–5281. [Google Scholar]
  5. Weaver SC, Salas R, Rico-Hesse R, Ludwig GV, Oberste MS, Boshell J, Tesh RB, 1996. Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. VEE Study Group. Lancet 348 : 436–440. [Google Scholar]
  6. Oberste MS, Fraire M, Navarro R, Zepeda C, Zarate ML, Ludwig GV, Kondig JF, Weaver SC, Smith JF, Rico-Hesse R, 1998. Association of Venezuelan equine encephalitis virus subtype IE with two equine epizootics in Mexico. Am J Trop Med Hyg 59 : 100–107. [Google Scholar]
  7. Hawley RJ, Eitzen EM Jr, 2001. Biological weapons–a primer for microbiologists. Annu Rev Microbiol 55 : 235–253. [Google Scholar]
  8. Rosenbloom M, Leikin JB, Vogel SN, Chaudry ZA, 2002. Biological and chemical agents: a brief synopsis. Am J Ther 9 : 5–14. [Google Scholar]
  9. Walton TE, Grayson MA, 1988. Venezuelan equine encephalomyelitis. Monath TP, ed. The Arboviruses: Epidemiology and Ecology. Volume IV. Boca Raton, FL: CRC Press, 203–231.
  10. Johnson KM, Martin DH, 1974. Venezuelan equine encephalitis. Adv Vet Sci Comp Med 18 : 79–116. [Google Scholar]
  11. Aguilar PV, Greene IP, Coffey LL, Medina G, Moncayo AC, Anishchenko M, Ludwig GV, Turell MJ, O’Guinn ML, Lee J, Tesh RB, Watts DM, Russell KL, Hice C, Yanoviak S, Morrison AC, Klein TA, Dohm DJ, Guzman H, Travassos da Rosa AP, Guevara C, Kochel T, Olson J, Cabezas C, Weaver SC, 2004. Endemic Venezuelan equine encephalitis in northern Peru. Emerg Infect Dis 10 : 880–888. [Google Scholar]
  12. Wang E, Bowen RA, Medina G, Powers AM, Kang W, Chandler LM, Shope RE, Weaver SC, 2001. Virulence and viremia characteristics of 1992 epizootic subtype IC Venezuelan equine encephalitis viruses and closely related enzootic subtype ID strains. Am J Trop Med Hyg 65 : 64–69. [Google Scholar]
  13. Walton TE, Alvarez O, Buckwalter RM, Johnson KM, 1973. Experimental infection of horses with enzootic and epizootic strains of Venezuelan equine encephalomyelitis virus. J Infect Dis 128 : 271–282. [Google Scholar]
  14. Sudia WD, Newhouse VF, Henderson BE, 1971. Experimental infection of horses with three strains of Venezuelan equine encephalomyelitis virus. II. Experimental vector studies. Am J Epidemiol 93 : 206–211. [Google Scholar]
  15. Leon CA, 1975. Sequelae of Venezuelan equine encephalitis in humans: a four year follow-up. Int J Epidemiol 4 : 131–140. [Google Scholar]
  16. Garcia-Tamayo J, Carreno G, Esparza J, 1979. Central nervous system alterations as sequelae of Venezuelan equine encephalitis virus infection in the rat. J Pathol 128 : 87–91. [Google Scholar]
  17. Aronson JF, Grieder FB, Davis NL, Charles PC, Knott T, Brown K, Johnston RE, 2000. A single-site mutant and revertants arising in vivo define early steps in the pathogenesis of Venezuelan equine encephalitis virus. Virology 270 : 111–123. [Google Scholar]
  18. Davis NL, Brown KW, Greenwald GF, Zajac AJ, Zacny VL, Smith JF, Johnston RE, 1995. Attenuated mutants of Venezuelan equine encephalitis virus containing lethal mutations in the PE2 cleavage signal combined with a second-site suppressor mutation in E1. Virology 212 : 102–110. [Google Scholar]
  19. Kinney RM, Chang GJ, Tsuchiya KR, Sneider JM, Roehrig JT, Woodward TM, Trent DW, 1993. Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5′-noncoding region and the E2 envelope glycoprotein. J Virol 67 : 1269–1277. [Google Scholar]
  20. Powers AM, Brault AC, Kinney RM, Weaver SC, 2000. The use of chimeric Venezuelan equine encephalitis viruses as an approach for the molecular identification of natural virulence determinants. J Virol 74 : 4258–4263. [Google Scholar]
  21. Wang E, Barrera R, Boshell J, Ferro C, Freier JE, Navarro JC, Salas R, Vasquez C, Weaver SC, 1999. Genetic and phenotypic changes accompanying the emergence of epizootic subtype IC Venezuelan equine encephalitis viruses from an enzootic subtype ID progenitor. J Virol 73 : 4266–4271. [Google Scholar]
  22. Anishchenko M, Paessler S, Greene IP, Aguilar PV, Carrara A, Weaver SC, 2004. Generation and characterization of closely related epizootic and enzootic infectious cDNA clones for studying interferon sensitivity and emergence mechanisms of Venezuelan equine encephalitis virus. J Virol 78 : 1–8. [Google Scholar]
  23. Cupp EW, Scherer WF, Lok JB, Brenner RJ, Dziem GM, Ordonez JV, 1986. Entomological studies at an enzootic Venezuelan equine encephalitis virus focus in Guatemala, 1977–1980. Am J Trop Med Hyg 35 : 851–859. [Google Scholar]
  24. Cupp EW, Scherer WF, Ordonez JV, 1979. Transmission of Venezuelan encephalitis virus by naturally infected Culex (Melanoconion) opisthopus. Am J Trop Med Hyg 28 : 1060–1063. [Google Scholar]
  25. Brault AC, Powers AM, Weaver SC, 2002. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J Virol 76 : 6387–6392. [Google Scholar]
  26. Rice CM, Levis R, Strauss JH, Huang HV, 1987. Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol 61 : 3809–3819. [Google Scholar]
  27. Kinney RM, Butrapet S, Chang GJ, Tsuchiya KR, Roehrig JT, Bhamarapravati N, Gubler DJ, 1997. Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 230 : 300–308. [Google Scholar]
  28. Lennette EH, Lennette DA, Lennette ET, 1995. Diagnostic Procedures for Viral, Rickettsial, and Chlamydial Infections. Washington, DC: American Public Health Association.
  29. Brault AC, Powers AM, Holmes EC, Woelk CH, Weaver SC, 2002. Positively charged amino acid substitutions in the E2 envelope glycoprotein are associated with the emergence of Venezuelan equine encephalitis virus. J Virol 76 : 1718–1730. [Google Scholar]
  30. Martin DH, Dietz WH, Alvaerez O Jr, Johnson KM, 1982. Epidemiological significance of Venezuelan equine encephalomyelitis virus in vitro markers. Am J Trop Med Hyg 31 : 561–568. [Google Scholar]
  31. Gleiser CA, Gochenour JWS, Berge TO, Tigertt WD, 1961. The comparative pathology of experimental Venezuelan equine encephalitis infection in different animal hosts. J Infect Dis 110 : 80–97. [Google Scholar]
  32. Jackson AC, SenGupta SK, Smith JF, 1991. Pathogenesis of Venezuelan equine encephalitis virus infection in mice and hamsters. Vet Pathol 28 : 410–418. [Google Scholar]
  33. Gorelkin L, Jahrling PB, 1975. Virus-initiated septic shock. Acute death of Venezuelan encephalitis virus-infected hamsters. Lab Invest 32 : 78–85. [Google Scholar]
  34. Gorelkin L, Jahrling PB, 1974. Pancreatic involvement by Venezuelan equine encephalomyelitis virus in the hamster. Am J Pathol 75 : 349–362. [Google Scholar]
  35. Jahrling PB, 1976. Virulence heterogeneity of a predominantly avirulent Western equine encephalitis virus population. J Gen Virol 32 : 121–128. [Google Scholar]
  36. Jahrling PB, Scherer F, 1973. Histopathology and distribution of viral antigens in hamsters infected with virulent and benign Venezuelan encephalitis viruses. Am J Pathol 72 : 25–38. [Google Scholar]
  37. Scherer WF, Chin J, 1977. Responses of guinea pigs to infections with strains of Venezuelan encephaltis virus, and correlations with equine virulence. Am J Trop Med Hyg 26 : 307–312. [Google Scholar]
  38. Bernard KA, Klimstra WB, Johnston RE, 2000. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 276 : 93–103. [Google Scholar]
  39. Spotts DR, Reich RM, Kalkhan MA, Kinney RM, Roehrig JT, 1998. Resistance to alpha/beta interferons correlates with the epizootic and virulence potential of Venezuelan equine encephalitis viruses and is determined by the 5′ noncoding region and glycoproteins. J Virol 72 : 10286–10291. [Google Scholar]
  40. Grieder FB, Davis NL, Aronson JF, Charles PC, Sellon DC, Suzuki K, Johnston RE, 1995. Specific restrictions in the progression of Venezuelan equine encephalitis virus-induced disease resulting from single amino acid changes in the glycoproteins. Virology 206 : 994–1006. [Google Scholar]
  41. Dubuisson J, Lustig S, Ruggli N, Akov Y, Rice CM, 1997. Genetic determinants of Sindbis virus neuroinvasiveness. J Virol 71 : 2636–2646. [Google Scholar]
  42. Tucker PC, Lee SH, Bui N, Martinie D, Griffin DE, 1997. Amino acid changes in the Sindbis virus E2 glycoprotein that increase neurovirulence improve entry into neuroblastoma cells. J Virol 71 : 6106–6112. [Google Scholar]
  43. Dropulic LK, Hardwick JM, Griffin DE, 1997. A single amino acid change in the E2 glycoprotein of Sindbis virus confers neurovirulence by altering an early step of virus replication. J Virol 71 : 6100–6105. [Google Scholar]
  44. Frolova EI, Fayzulin RZ, Cook SH, Griffin DE, Rice CM, Frolov I, 2002. Roles of nonstructural protein nsP2 and alpha/beta interferons in determining the outcome of Sindbis virus infection. J Virol 76 : 11254–11264. [Google Scholar]
  45. Paessler S, Fayzulin RZ, Anishchenko M, Greene IP, Weaver SC, Frolov I, 2003. Recombinant Sindbis/Venezuelan equine encephalitis virus is highly attenuated and immunogenic. J Virol 77 : 9278–9286. [Google Scholar]
  46. Fazakerley JK, Boyd A, Mikkola ML, Kaariainen L, 2002. A single amino acid change in the nuclear localization sequence of the nsP2 protein affects the neurovirulence of Semliki Forest virus. J Virol 76 : 392–396. [Google Scholar]
  47. Ahola T, Kujala P, Tuittila M, Blom T, Laakkonen P, Hinkkanen A, Auvinen P, 2000. Effects of palmitoylation of replicase protein nsP1 on alphavirus infection. J Virol 74 : 6725–6733. [Google Scholar]
  48. Tuittila M, Hinkkanen AE, 2003. Amino acid mutations in the replicase protein nsP3 of Semliki Forest virus cumulatively affect neurovirulence. J Gen Virol 84 : 1525–1533. [Google Scholar]
  49. Tarbatt CJ, Glasgow GM, Mooney DA, Sheahan BJ, Atkins GJ, 1997. Sequence analysis of the avirulent, demyelinating A7 strain of Semliki Forest virus. J Gen Virol 78 : 1551–1557. [Google Scholar]
  50. Santagati MG, Maatta JA, Roytta M, Salmi AA, Hinkkanen AE, 1998. The significance of the 3′-nontranslated region and E2 amino acid mutations in the virulence of Semliki Forest virus in mice. Virology 243 : 66–77. [Google Scholar]
  51. Santagati MG, Maatta JA, Itaranta PV, Salmi AA, Hinkkanen AE, 1995. The Semliki Forest virus E2 gene as a virulence determinant. J Gen Virol 76 : 47–52. [Google Scholar]

Data & Media loading...

  • Received : 25 Aug 2004
  • Accepted : 03 Oct 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error