1921
Volume 72, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

The extensive data on the relationship between parasite genotype and susceptibility to antifolate drugs can now be coupled with pharmacokinetic information to allow construction of models of the selection and spread of antifolate-resistant . In this report, we have modeled the effect on resistance selection processes of combinations of antifolate antimalarial drugs with artesunate and with amodiaquine under a variety of conditions that can be defined by the user. The model is intended to assist policymakers in forecasting the useful therapeutic life (UTL) for a range of potential combination treatments. The model is especially designed for use by African malaria programs so that the interactions of key variables can be explored and appropriate combinations of drugs can be chosen for field testing. The model provides some important general conclusions: 1) for optimal extension of UTL, combination therapy must be deployed before either constituent drug is used as monotherapy; 2) even short periods of monotherapy can severely limit the usefulness of subsequent combination therapy; and 3) that adding a second drug to rescue an antifolate antimalarial that is overtly failing is an inappropriate and ultimately wasteful exercise.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2005.72.163
2005-02-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/72/2/0720163.html?itemId=/content/journals/10.4269/ajtmh.2005.72.163&mimeType=html&fmt=ahah

References

  1. Hastings IM, D’Alessandro U, 2000. Modelling a predictable disaster: the rise and spread of drug-resistant malaria. Parasitol Today 16 : 340–347. [Google Scholar]
  2. White NJ, Nosten F, Looareesuwan S, Watkins WM, Marsh K, Snow RW, Kokwaro G, Ouma J, Hien TT, Molyneux ME, Taylor TE, Newbold CI, Ruebush TK 2nd, Danis M, Greenwood BM, Anderson RM, Olliaro P, 1999. Averting a malaria disaster. Lancet 353 : 1965–1967. [Google Scholar]
  3. Hastings IM, Watkins WM, White NJ, 2002. The evolution of drug-resistant malaria: the role of drug elimination half-life. Philos Trans R Soc Lond B Biol Sci 357 : 505–519. [Google Scholar]
  4. Peters W, 1985. The problem of drug resistance in malaria. Parasitology 90 : 705–715. [Google Scholar]
  5. Nosten F, Brasseur P, 2002. Combination therapy for malaria: the way forward? Curr Opin Drugs 62 : 1315–1329. [Google Scholar]
  6. World Health Organization, 2001. Antimalarial Drug Combination Therapy: Report of a WHO Technical Consultation. Geneva: World Health Organization.
  7. EANMAT, 2001. Monitoring antimalarial drug resistance within National Malaria Control Programmes: the EANMAT experience. Trop Med Int Health 6 : 891–898. [Google Scholar]
  8. Shretta R, Omumbo J, Rapuoda B, Snow RW, 2000. Using evidence to change antimalarial drug policy in Kenya. Trop Med Int Health 5 : 755–764. [Google Scholar]
  9. Goodman CA, Coleman PG, Mills AJ, 2001. Changing the first line drug for malaria treatment–cost-effectiveness analysis with highly uncertain inter-temporal trade-offs. Health Econ 10 : 731–749. [Google Scholar]
  10. Shretta R, Walt G, Brugha R, Snow R, 2001. A political analysis of corporate drug donations: the example of Malarone in Kenya. Health Policy Plann 16 : 161–170. [Google Scholar]
  11. Hyde JE, 2002. Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microbes Infect 4 : 165–174. [Google Scholar]
  12. International Artemisinin Study Group, 2004. Artesunate combinations for treatment of malaria: meta-analysis. Lancet 363 : 9–17. [Google Scholar]
  13. Trape JF, 2001. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg 64 : 12–17. [Google Scholar]
  14. Watkins WM, Mosobo M, 1993. Treatment of Plasmodium falciparum malaria with pyrimethamine-sulfadoxine: selective pressure for resistance is a function of long elimination half-life. Trans R Soc Trop Med Hyg 87 : 75–78. [Google Scholar]
  15. Sibley CH, Hyde JE, Sims PFG, Plowe CV, Kublin JG, Mberu EK, Cowman AF, Winstanley PA, Watkins WM, Nzila AM, 2001. Pyrimethamine/sulfadoxine resistance in Plasmodium falciparum: What next? Trends Parasitol 17 : 582–588. [Google Scholar]
  16. Amukoye E, Winstanley PA, Watkins WM, Snow RW, Hatcher J, Mosobo M, Ngumbao E, Lowe B, Ton M, Minyiri G, Marsh K, 1997. Chlorproguanil-dapsone: Effective treatment for uncomplicated falciparum malaria. Antimicrob. Agents Chemother. 41 : 2261–2264. [Google Scholar]
  17. Nzila AM, Nduati E, Mberu EK, Sibley CH, Monks SA, Winstanley PA, Watkins WM, 2000. Molecular evidence of greater selective pressure for drug resistance exerted by the long-acting antifolate pyrimethamine/sulfadoxine compared with the shorter-acting chlorproguanil/dapsone on Kenyan Plasmodium falciparum. J Infect Dis 181 : 2023–2028. [Google Scholar]
  18. Talisuna AO, Langi P, Mutabingwa TK, Watkins WM, van Marck E, Egwang TG, D’Alessandro U, 2004. Population-based validation of DHFR gene mutations for the prediction of sulfadoxine-pyrimethamine resistance in Uganda. Trans R Soc Trop Med Hyg 97 : 338–342. [Google Scholar]
  19. Mutabingwa T, Nzila A, Mberu E, Nduati E, Winstanley P, Hills E, Watkins W, 2001. Chlorproguanil-dapsone for treatment of drug-resistant falciparum malaria in Tanzania. Lancet 358 : 1218–1223. [Google Scholar]
  20. Watkins WM, Mberu EK, Winstanley PA, Plowe CV, 1997. The efficacy of antifolate antimalarial combinations in Africa: a predictive model based on pharmacodynamic and pharmaco-kinetic analyses. Parasitol Today 13 : 459–464. [Google Scholar]
  21. EANMAT, 2003. The efficacy of antimalarial monotherapies sulphadoxine-pyrimethamine and amodiaquine in east Africa: implications for sub-regional policy. Trop Med Int Health 8 : 860–867. [Google Scholar]
  22. Spencer HC, Oloo AJ, Watkins WW, Sixsmith DG, Churchill FC, Koech DK, 1984. Amodiaquine more effective than chloroquine against Plasmodium falciparum malaria on Kenya coast. Lancet 1 : 956–957. [Google Scholar]
  23. World Health Organization, 2001. The Use of Antimalarial Drugs. Report of a WHO Informal Consultation. Geneva: World Health Organization.
  24. Paget-McNicol O, Saul A, 2001. Mutation rates in the dihydrofolate reductase gene of Plasmodium falciparum. Parasitology 122 : 497–505. [Google Scholar]
  25. Nair S, Williams JT, Brockman A, Paiphun L, Mayxay M, Newton PN, Guthmann JP, Smithuis FM, Hien TT, White NJ, Nosten F, Anderson TJ, 2003. A selective sweep driven by pyrimethamine treatment in southeast Asian malaria parasites. Mol Biol Evol 20 : 1526–1536. [Google Scholar]
  26. Roper C, Pearce R, Bredenkamp B, Gumede J, Drakeley C, Mosha F, Chandramohan D, Sharp B, 2003. Antifolate anti-malarial resistance in southeast Africa: a population-based analysis. Lancet 361 : 1174–1181. [Google Scholar]
  27. Cortese JF, Caraballo A, Contreras CE, Plowe CV, 2002. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis 186 : 999–1006. [Google Scholar]
  28. Gamage SA, Tepsiri N, Wilairat P, Wojcik SJ, Figgitt DP, Ralph RK, Denny WA, 1994. Synthesis and in vitro evaluation of 9-anilino-3,6-diaminoacridines active against a multidrug-resistant strain of the malaria parasite Plasmodium falciparum. J Med Chem 37 : 1486–1494. [Google Scholar]
  29. Sirawaraporn W, Sathitkul T, Sirawaraporn R, Yuthavong Y, Santi DV, 1997. Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc Natl Acad Sci U S A 94 : 1124–1129. [Google Scholar]
  30. Daramola OO, Alonso PL, O’Dempsey TJ, Twumasi P, McArdle TF, Greenwood BM, 1991. Sensitivity of Plasmodium falciparum in The Gambia to cotrimoxazole. Trans R Soc Trop Med Hyg 85 : 345–348. [Google Scholar]
  31. Bloland PB, Redd SC, Kazembe P, Tembenu R, Wirima JJ, Campbell CC, 1991. Cotrimoxazole for childhood febrile illness in malaria-endemic regions. Lancet 337 : 518–520. [Google Scholar]
  32. Kilian AH, Jelinek T, Prislin I, Kabagambe G, Byamukama W, Mpigika G, Korte R, von Sonnenburg F, 1998. Resistance in vivo of Plasmodium falciparum to cotrimoxazole in western Uganda. Trans R Soc Trop Med Hyg 92 : 197–200. [Google Scholar]
  33. White NJ, 1992. Antimalarial drug resistance: the pace quickens. J Antimicrob Chemother 30 : 571–585. [Google Scholar]
  34. Bloland PB, 2003. A contrarian view of malaria therapy policy in Africa. Am J Trop Med Hyg 68 : 125–126. [Google Scholar]
  35. Dorsey G, Njama D, Kamya MR, Cattamanchi A, Kyabayinze D, Staedke SG, Gasasira A, Rosenthal PJ, 2002. Sulfadoxine/pyrimethamine alone or with amodiaquine or artesunate for treatment of uncomplicated malaria: a longitudinal randomised trial. Lancet 360 : 2031–2038. [Google Scholar]
  36. Rwagacondo CE, Niyitegeka F, Sarushi J, Karema C, Mugisha V, Dujardin JC, van Overmeir C, van den Ende J, D’Alessandro U, 2003. Efficacy of amodiaquine alone and combined with sulfadoxine-pyrimethamine and of sulfadoxine pyrimethamine combined with artesunate. Am J Trop Med Hyg 68 : 743–747. [Google Scholar]
  37. Sweetman SC, ed., 2002. Martindale: The Complete Drug Reference. 33rd edition. London: The Pharmaceutical Press.
  38. Krishna S, White NJ, 1996. Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin Pharmacokinet 30 : 263–299. [Google Scholar]
  39. Winstanley P, Edwards G, Orme M, Breckenridge A, 1987. The disposition of amodiaquine in man after oral administration. Br J Clin Pharmacol 23 : 1–7. [Google Scholar]
  40. Alloueche A, Bailey W, Barton S, Bwika J, Chimpeni P, Falade CO, Fehintola FA, Horton J, Jaffar S, Kanyok T, Kremsner PG, Kublin JG, Lang T, Missinou MA, Mkandala C, Oduola AMJ, Premji Z, Robertson L, Sowunmi A, Ward SA, Winstanley P, 2004. Comparison of chlorproguanil-dapsone with sulfadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in young African children: double-blind randomised controlled trial. Lancet 363 : 1843–1848. [Google Scholar]
  41. Nzila AM, Mberu EK, Sulo J, Dayo H, Winstanley PA, Sibley CH, Watkins WM, 2000. Towards an understanding of the mechanism of pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: genotyping of dihydrofolate reductase and dihydropteroate synthase of Kenyan parasites. Antimicrob Agents Chemother 44 : 991–996. [Google Scholar]
  42. Wilairatana P, Kyle DE, Looareesuwan S, Chinwongprom K, Amradee S, White NJ, Watkins WM, 1997. Poor efficacy of antimalarial biguanide-dapsone combinations in the treatment of acute, uncomplicated falciparum malaria in Thailand. Ann Trop Med Parasitol 91 : 125–132. [Google Scholar]
  43. White NJ, 1996. Can amodiaquine be resurrected? Lancet 348 : 1184–1185. [Google Scholar]
  44. Adjuik M, Agnamey P, Babiker A, Borrmann S, Brasseur P, Cisse M, Cobelens F, Diallo S, Faucher JF, Garner P, Gikunda S, Kremsner PG, Krishna S, Lell B, Loolpapit M, Matsiegui PB, Missinou MA, Mwanza J, Ntoumi F, Olliaro P, Osimbo P, Rezbach P, Some E, Taylor WR, 2002. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial. Lancet 359 : 1365–1372. [Google Scholar]
  45. Curtis J, Maxwell CA, Msuya FH, Mkongewa S, Alloueche A, Warhurst DC, 2002. Mutations in dhfr in Plasmodium falciparum infections selected by chlorproguanil-dapsone treatment. J Infect Dis 186 : 1861–1864. [Google Scholar]
  46. Sutherland CJ, Drakeley CJ, Obisike U, Coleman R, Jawara M, Targett GA, Milligan P, Pinder M, Walraven G, 2003. The addition of artesunate to chloroquine for treatment of Plasmodium falciparum malaria in Gambian children delays, but does not prevent treatment failure. Am J Trop Med Hyg 69 : 19–25. [Google Scholar]
  47. Hastings IM, 1997. A model for the origins and spread of drug-resistant malaria. Parasitology 115 : 133–141. [Google Scholar]
  48. Dye C, Williams BG, 1997. Multigenic drug resistance among inbred malaria parasites. Proc R Soc Lond B Biol Sci 264 : 61–67. [Google Scholar]
  49. Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP, 2000. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17 : 1467–1482. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2005.72.163
Loading
/content/journals/10.4269/ajtmh.2005.72.163
Loading

Data & Media loading...

  • Received : 19 Feb 2004
  • Accepted : 26 Jul 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error