1921
Volume 71, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Levels of prepatent infection were monitored in intermediate host snails () collected from transmission sites in coastal Kenya, using a polymerase chain reaction (PCR) assay amplifying the Dra I repeated sequence of . The timing and number of prepatent and patent infections were determined for each site and, where the time of first appearance was clear, the minimal prepatent period was estimated to be five weeks. High, persistent, prepatency rates (range = 28–54%), indicated a significant degree of repeated area contamination with parasite ova. In contrast, rates of cercarial shedding proved locally variable, and were either low (range = 0.14–3.4%) or altogether absent, indicating that only a small proportion of infected snails reach the stage of cercarial shedding. Given the apparently strong focal effects of environmental conditions, implications of these new data are discussed regarding the estimation of local force of transmission and the design of control activities.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2004.71.765
2004-12-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/14761645/71/6/0700765.html?itemId=/content/journals/10.4269/ajtmh.2004.71.765&mimeType=html&fmt=ahah

References

  1. King CH, 2001. Epidemiology of schistosomiasis: determinants of transmission of infection. Mahmoud AAF, ed. Schistosomiasis. London: Imperial College Press, 115–132.
  2. Vercruysse J, Shaw DJ, de Bont J, 2001. Index of potential contamination for schistosomiasis. Trends Parasitol 17 : 256–261. [Google Scholar]
  3. Barbour AD, 1985. The importance of age and water contact patterns in relation to Schistosoma haematobium infection. Trans R Soc Trop Med Hyg 79 : 151–153. [Google Scholar]
  4. Chandiwana SK, Woolhouse ME, 1991. Heterogeneities in water contact patterns and the epidemiology of Schistosoma haematobium. Parasitology 103 : 363–370. [Google Scholar]
  5. Sturrock RF, Klumpp RK, Ouma JH, Butterworth AE, Fulford AJ, Kariuki HC, Thiongo FW, Koech D, 1994. Observations on the effects of different chemotherapy strategies on the transmission of Schistosoma mansoni in Machakos District, Kenya, measured by long-term snail sampling and cercariom-etry. Parasitology 109 : 443–453. [Google Scholar]
  6. Sturrock RF, Diaw OT, Talla I, Niang M, Piau JP, Capron A, 2001. Seasonality in the transmission of schistosomiasis and in populations of its snail intermediate hosts in and around a sugar irrigation scheme at Richard Toll, Senegal. Parasitology 123 (Suppl): S77–S89. [Google Scholar]
  7. Ouma JH, Sturrock RF, Klumpp RK, Kariuki HC, 1989. A comparative evaluation of snail sampling and cercariometry to detect Schistosoma mansoni transmission in a large-scale, longitudinal field-study in Machakos, Kenya. Parasitology 99 : 349–355. [Google Scholar]
  8. Sturrock RF, 2001. The schistosomes and their intermediate hosts. Mahmoud AAF, ed. Schistosomiasis. London: Imperial College Press, 7–83.
  9. Anderson RM, May RM, 1979. Prevalence of schistosome infections within molluscan populations: observed patterns and theoretical predictions. Parasitology 79 : 63–94. [Google Scholar]
  10. Barbour AD, 1996. Modeling the transmission of schistosomiasis: an introductory view. Am J Trop Med Hyg 55 (Suppl): 135–143. [Google Scholar]
  11. Gryseels B, 1996. Uncertainties in the epidemiology and control of schistosomiasis. Am J Trop Med Hyg 55 (Suppl): 103–108. [Google Scholar]
  12. Donnelly FA, Appleton CC, Schutte CH, 1983. The influence of salinity on certain aspects of the biology of Bulinus (Physopsis) africanus. Int J Parasitol 13 : 539–545. [Google Scholar]
  13. Joubert PH, Pretorius SJ, Kruger FJ, 1991. Further studies on the susceptibility of Bulinus africanus to infection with Schistosoma haematobium. Ann Trop Med Parasitol 85 : 253–258. [Google Scholar]
  14. Gracio MA, 1988. A comparative laboratory study of Bulinus (Physopsis) globosus uninfected and infected with Schistosoma haematobium. Malacol Rev 21 : 123–127. [Google Scholar]
  15. Woolhouse ME, 1989. The effect of schistosome infection on the mortality rates of Bulinus globosus and Biomphalaria pfeifferi. Ann Trop Med Parasitol 83 : 137–141. [Google Scholar]
  16. Shiff CJ, Evans A, Yiannakis C, Eardley M, 1975. Seasonal influence on the production of Schistosoma haematobium and S. mansoni cercariae in Rhodesia. Int J Parasitol 5 : 119–123. [Google Scholar]
  17. Woolhouse ME, Chandiwana SK, 1989. Spatial and temporal heterogeneity in the population dynamics of Bulinus globosus and Biomphalaria pfeifferi and in the epidemiology of their infection with schistosomes. Parasitology 98 : 21–34. [Google Scholar]
  18. Fine PE, Lehman JS Jr, 1977. Mathematical models of schistosomiasis: report of a workshop. Am J Trop Med Hyg 26 : 500–504. [Google Scholar]
  19. Barbour AD, 1978. Macdonald’s model and the transmission of bilharzia. Trans R Soc Trop Med Hyg 72 : 6–15. [Google Scholar]
  20. Bradley DJ, May RM, 1978. Consequences of helminth aggregation for the dynamics of schistosomiasis. Trans R Soc Trop Med Hyg 72 : 262–273. [Google Scholar]
  21. Sturrock RG, Karamsadkar SJ, Ouma JH, 1979. Schistosome infection rates in field snails: Schistosoma mansoni in Biomphalaria pfeifferi from Kenya. Ann Trop Med Parasitol 73 : 369–375. [Google Scholar]
  22. Hamburger J, Weil M, Turetzky T, Ouma JH, Koech DK, Klumpp R, Siongok TK, Sturrock RF, 1989. Identification of snails infected with schistosomes by ELISA employing mono-clonal antibodies: Schistosoma mansoni in laboratory snails (Biomphalaria glabrata) and in field snails (Biomphalaria pfeifferi) from Kenya. Am J Trop Med Hyg 40 : 613–619. [Google Scholar]
  23. Hamburger J, Weil M, Anton M, Turetzky T, 1989. Schistosoma mansoni antigens recognized in Biomphalaria glabrata hemolymph by monoclonal antibodies. Am J Trop Med Hyg 40 : 605–612. [Google Scholar]
  24. Hamburger J, Turetzky T, Kapeller I, Deresiewicz R, 1991. Highly repeated short DNA sequences in the genome of Schistosoma mansoni recognized by a species-specific probe. Mol Biochem Parasitol 44 : 73–80. [Google Scholar]
  25. Hamburger J, He N, Xin XY, Ramzy RM, Jourdane J, Ruppel A, 1998. A polymerase chain reaction assay for detecting snails infected with bilharzia parasites (Schistosoma mansoni) from very early prepatency. Am J Trop Med Hyg 59 : 872–876. [Google Scholar]
  26. Hamburger J, He N, Abbasi I, Ramzy RM, Jourdane J, Ruppel A, 2001. Polymerase chain reaction assay based on a highly repeated sequence of Schistosoma haematobium: a potential tool for monitoring schistosome-infested water. Am J Trop Med Hyg 65 : 907–911. [Google Scholar]
  27. Muchiri EM, Ouma JH, King CH, 1996. Dynamics and control of Schistosoma haematobium transmission in Kenya: an overview of the Msambweni Project. Am J Trop Med Hyg 55 : 127–134. [Google Scholar]
  28. King CH, Lombardi G, Lombardi C, Greenblatt R, Hodder S, Kinyanjui H, Ouma J, Odiambo O, Bryan PJ, Muruka J, Magak P, Weinert D, Mackay W, Ransohoff D, Houser H, Koech D, Siongok TK, Mahmoud AAF, 1988. Chemotherapy-based control of schistosomiasis haematobia. I. Metrifonate versus praziquantel in control of intensity and prevalence of infection. Am J Trop Med Hyg 39 : 295–305. [Google Scholar]
  29. el Kholy H, Arap Siongok TK, Koech D, Sturrock RF, Houser H, King CH, Mahmoud AA, 1989. Effects of borehole wells on water utilization in Schistosoma haematobium endemic communities in Coast Province, Kenya. Am J Trop Med Hyg 41 : 212–219. [Google Scholar]
  30. Sturrock RF, Kinyanjui H, Thiongo FW, Tosha S, Ouma JH, King CH, Koech D, Siongok TK, Mahmoud AA, 1990. Chemotherapy-based control of schistosomiasis haematobia. 3. Snail studies monitoring the effect of chemotherapy on transmission in the Msambweni area, Kenya. Trans R Soc Trop Med Hyg 84 : 257–261. [Google Scholar]
  31. Kariuki HC, Clennon JA, Brady M, Kitron U, Sturrock RF, Ouma JH, Tosha S, Ndzovhu M, Mungai P, Hamburger J, Hoffman O, Pellegrini C, Muchiri EM, King CH, 2004. Distribution patterns and cercarial shedding of Bulinus nasutus and other snails in Msambweni area, Coast Province, Kenya. Am J Trop Med Hyg 70 : 449–456. [Google Scholar]
  32. Olivier L, Schneidermann M, 1956. A method for estimating the density of aquatic snail populations. Exp Parasitol 5 : 109–117. [Google Scholar]
  33. Butterworth AE, Dalton PR, Dunne DW, Mugambi M, Ouma JH, Richardson BA, Siongok TK, Sturrock RF, 1984. Immunity after treatment of human schistosomiasis mansoni. I. Study design, pretreatment observations and the results of treatment. Trans R Soc Trop Med Hyg 78 : 108–123. [Google Scholar]
  34. Stothard JR, Hughes S, Rollinson D, 1996. Variation within the internal transcribed spacer (ITS) of ribosomal DNA genes of intermediate snail hosts within the genus Bulinus (Gastropoda: Planorbidae). Acta Trop 61 : 19–29. [Google Scholar]
  35. Browne HG, Thomas JI, 1963. A method for isolating pure, viable schistosome eggs from host tissues. J Parasitol 49 : 371–374. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2004.71.765
Loading
/content/journals/10.4269/ajtmh.2004.71.765
Loading

Data & Media loading...

  • Received : 15 Feb 2004
  • Accepted : 07 Jul 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error