Volume 71, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Rapid diagnosis leading to effective treatment is essential to control escalating infectious diseases such as malaria. Malaria pigment (hemozoin) detection by laser desorption mass spectometry (LDMS) was recently shown to be a sensitive (<10 parasites/μL) technique for detecting parasites cultured in human blood. To examine the use of LDMS in a rapid new malaria screening assay, we followed the time course of infections in mice in parallel with light microscopy and a colorimetric hemozoin assay. Hemozoin was detected by LDMS in 0.3 μL of blood within two days of infection independently of the inoculating dose of 10, 10, or 10 parasite-infected erythrocytes. Microscopy and colorimetric hemozoin determinations lagged the LDMS detection of infections by 2–4 and 3–5 days, respectively, except at the highest inoculation dose. The LDMS detection of hemozoin is a potentially more rapid screen than light microscopy for detecting malaria infection in this mouse model at parasitemias <0.1%.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Guerin PJ, Olliaro P, Nosten F, Druilhe P, Laxminarayan R, Binka F, Kilama WL, Ford N, White NJ, 2002. Malaria: current status of control, diagnosis, treatment and a proposal agenda for research and development. Lancet Infect Dis 2 : 564–573. [Google Scholar]
  2. Makler M, Palmer C, Ager A, 1998. A review of practical techniques for the diagnosis of malaria. Ann Trop Med Parasitol 92 : 419–433. [Google Scholar]
  3. Hanscheid T, 1999. Diagnosis of malaria: a review of alternatives to conventional microscopy. Clin Lab Haematol 21 : 235–245. [Google Scholar]
  4. Moody A, 2002. Rapid diagnostic tests for malaria parasites. Clin Microbiology Rev 15 : 66–78. [Google Scholar]
  5. Mendelow BV, Lyons C, Nhlangothi P, Tana M, Munster M, Wypkema E, Liebowitz L, Marshall L, Scott S, Coetzer T, 1999. Automated malaria detection by depolarization of laser light. Br J Haematol 104 : 499–503. [Google Scholar]
  6. Scott CS, van Zyl D, Ho E, Meyersfeld D, Ruivo L, Mendelow BV, Coetzer TL, 2002. Automated detection of WBC intracellular malaria-associated pigment (hemozoin) with Abbott Cell-Dyn 3200 and Cell-Dyn 3700 analyzers: overview and results from the South African Institute for Medical Research (SAIMR) II Evaluation. Lab Hematol 8 : 91–101. [Google Scholar]
  7. Forney JR, Magill AJ, Wongsrichanalai C, Sirichaisinthop J, Bautista CT, Heppner DG, Miller RS, Ockenhouse CF, Gubanov A, Shafer R, DeWitt CC, Quino-Ascurra HA, Kester KE, Kain KC, Walsh DS, Ballou WR, Gasser RA Jr, 2001. Malaria rapid diagnostic devices: performance characteristics of the ParaSight F device determined in a multisite field study. J Clin Microbiol 39 : 2884–2890. [Google Scholar]
  8. Demirev PA, Feldman AB, Kongkasuriyachai D, Scholl P, Sullivan D Jr, Kumar N, 2002. Detection of malaria parasites by laser desorption mass spectrometry. Anal Chem 74 : 3262–3266. [Google Scholar]
  9. Slater AF, Swiggard WJ, Orton BR, Flitter WD, Goldberg DE, Cerami A, Henderson GB, 1991. An iron-carboxylate bond links the heme units of malaria pigment. Proc Natl Acad Sci USA 88 : 325–329. [Google Scholar]
  10. Bohle D, Dinnebier R, Madsen S, Stephens P, 1997. Characterization of the products of the heme detoxification pathway in malarial late trophozoites by x-ray diffraction. J Biol Chem 272 : 713–716. [Google Scholar]
  11. Pagola S, Stephens P, Bohle D, Kosar A, Madsen S, 2000. The structure of malaria pigment β-hematin. Nature 404 : 307–310. [Google Scholar]
  12. Bohle DS, Kosar AD, Madsen SK, 2002. Propionic acid side chain hydrogen bonding in the malaria pigment β-hematin. Biochem Biophys Res Comm 294 : 132–135. [Google Scholar]
  13. Sullivan DJ, 2002. Hemozoin: a biocrystal synthesized during the degradation of hemoglobin. Int J Parasitology 32 : 1645–1653. [Google Scholar]
  14. Noland GS, Briones N, Sullivan DS, 2003. The shape and size of hemozoin crystals distinguishes diverse Plasmodium species. Mol Biochem Parasitol 130 : 91–99. [Google Scholar]
  15. Egan TJ, 2002. Physico-chemical aspects of hemozoin (malaria pigment) structure and formation. J Inorg Biochem 91 : 19–26. [Google Scholar]
  16. Quirke JM, 2000. Mass spectrometry of porphyrins and metal-loporphyrins. Kadish, KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. San Diego: Academic Press 371–422.
  17. Pandey A, Tekwani B, Pandey V, 1995. Characterization of hemozoin from liver and spleen of mice infected with Plasmodium yoelii, a rodent malaria parasite. Biomed Res 16 : 115–120. [Google Scholar]
  18. Slater AF, Cerami A, 1992. Inihibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 355 : 167–169. [Google Scholar]
  19. Cornish T, Bryden W, 1999. Miniature time-of-flight mass spectrometer for a field-portable biodetection system. APL Tech Digest 20 : 335–342. http://www.jhuapl.edu/techdigest/td2003/cornish.pdf [Google Scholar]
  20. Scholl PF, Leonardo MA, Rule A, Carlson M, Antoine M, Buckley T, 1999. The development of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the detection of biological warfare agent aerosols. APL Tech Digest 20 : 343–351. http://www.jhuapl.edu/digest/td2003/scholl.pdf [Google Scholar]
  21. Vigario AM, Belnoue E, Cumano A, Marussig M, Miltgen F, Landau I, Mazier D, Gresser I, Renia L, 2001. Inhibition of Plasmodium yoelii blood-stage malaria by interferon-α through the inhibition of production of its target cell, the reticulocyte. Blood 97 : 3966–3971. [Google Scholar]
  22. Day NP, Pham TD, Phan TL, Dinh XS, Pham PL, Ly VC, Tran TH, Nguyen TH, Bethell DB, Nguyan HP, Tran TH, White NJ, 1996. Clearance kinetics of parasites and pigment containing leukocytes in severe malaria. Blood 88 : 4694–4700. [Google Scholar]
  23. Chen MM, Shi L, Sullivan DJ, 2001. Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin. Mol Biochem Parasitol 113 : 1–8. [Google Scholar]
  24. Janney SK, Joist JJ, Fitch CD, 1986. Excess release of ferriheme in G6PD-deficient erythrocytes: possible cause of hemolysis and resistance to malaria. Blood 67 : 331–333. [Google Scholar]
  25. Aebersold R, Mann M, 2003. Mass-spectrometry based proteomics. Nature 13 : 198–207. [Google Scholar]
  26. Lasonder E, Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW, Eling WM, Hall N, Waters AP, Stunnenberg HG, Mann M, 2002. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419 : 537–542. [Google Scholar]
  27. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ, 2002. A proteomic view of the Plasmodium falciparum life cycle. Nature 419 : 520–526. [Google Scholar]
  28. Rabilloud T, Blisnick T, Heller M, Luche S, Aebersold R, Lunar-di J, Braun-Breton C, 1999. Analysis of membrane proteins by 2-dimensional electrophoresis: comparison of the proteins extracted from normal or Plasmodium falciparum-infected erythrocyte ghosts. Electrophoresis 20 : 3603–3610. [Google Scholar]

Data & Media loading...

  • Received : 23 Feb 2004
  • Accepted : 18 Apr 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error