Volume 71, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Infected deer ticks () were allowed to attach to naive mice for variable lengths of time to determine the duration of tick attachment required for Powassan (POW) virus transmission to occur. Viral load in engorged larvae detaching from viremic mice and in resulting nymphs was also monitored. Ninety percent of larval ticks acquired POW virus from mice that had been intraperitoneally inoculated with 10 plaque-forming units (PFU). Engorged larvae contained approximately 10 PFU. Transstadial transmission efficiency was 22%, resulting in approximately 20% infection in nymphs that had fed as larvae on viremic mice. Titer increased approximately 100-fold during molting. Nymphal deer ticks efficiently transmitted POW virus to naive mice after as few as 15 minutes of attachment, suggesting that unlike , and , no grace period exists between tick attachment and POW virus transmission.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Katavolos P, Armstrong PM, Dawson JE, Telford SR III, 1998. Duration of tick attachment required for transmission of granulocytic ehrlichiosis. J Infect Dis 177: 1422–1425. [Google Scholar]
  2. Spencer RR, Parker RR, 1923. Rocky Mountain spotted fever: infectivity of fasting and recently fed ticks. Public Health Rep 38: 333–339. [Google Scholar]
  3. Piesman J, Mather TN, Sinsky RJ, Spielman A, 1987. Duration of tick attachment and Borrelia burgdorferi transmission. J Clin Microbiol 25: 557–558. [Google Scholar]
  4. Piesman J, Spielman A, 1980. Human babesiosis on Nantucket Island: prevalence of Babesia microti in ticks. Am J Trop Med Hyg 29: 742–746. [Google Scholar]
  5. Karakashian SJ, Rudzinska MA, Spielman A, Lewengrub S, Piesman J, Shoukrey N, 1983. Ultrastructural studies on sporogony of Babesia microti in salivary gland cells of the tick Ixodes dammini. Cell Tissue Res 231: 275–287. [Google Scholar]
  6. Ribeiro JM, Mather TN, Piesman J, Spielman A, 1987. Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodidae). J Med Entomol 24: 201–205. [Google Scholar]
  7. Ebel GD, Spielman A, Telford SR III, 2001. Phylogeny of North American Powassan virus. J Gen Virol 82: 1657–1665. [Google Scholar]
  8. Ebel GD, Campbell E, Goethert HK, Spielman A, Telford SR, 2000. Enzootic transmission of deer tick virus in New England and Wisconsin sites. Am J Trop Med Hyg 63: 36–42. [Google Scholar]
  9. Ebel GD, Foppa I, Spielman A, Telford SR, 1999. A focus of deer tick virus transmission in the northcentral United States. Emerg Infect Dis 5: 570–574. [Google Scholar]
  10. Telford SR III, Armstrong PM, Katavolos P, Foppa I, Garcia AS, Wilson ML, Spielman A, 1997. A new tick-borne encephalitis-like virus infecting New England deer ticks, Ixodes dammini. Emerg Infect Dis 3: 165–170. [Google Scholar]
  11. Lindsey HS, Calisher CH, Matthews JH, 1976. Serum dilution neutralization test for California group virus identification and serology. J Clin Microbiol 4: 503–510. [Google Scholar]
  12. Alekseev AN, Burenkova LA, Vasilieva IS, Dubinina HV, Chunikhin SP, 1996. Preliminary studies on virus and spirochete accumulation in the cement plug of ixodid ticks. Exp Appl Acarol 20: 713–723. [Google Scholar]
  13. Chernesky MA, McLean DM, 1969. Localization of Powassan virus in Dermacentor andersoni ticks by immunofluorescence. Can J Microbiol 15: 1399–1408. [Google Scholar]
  14. Artsob H, Spence L, Surgeoner G, McCreadie J, Thorsen J, Th’ng C, Lampotang V, 1984. Isolation of Francisella tularensis and Powassan virus from ticks (Acari: Ixodidae) in Ontario, Canada. J Med Entomol 21: 165–168. [Google Scholar]
  15. Main AJ, Carey AB, Downs WG, 1979. Powassan virus in Ixodes cookei and Mustelidae in New England. J Wildl Dis 15: 585–591. [Google Scholar]
  16. Artsob H, 1989. Powassan encephalitis. Monath T, ed. The Arboviruses: Epidemiology and Ecology. Boca Raton, FL: CRC Press, 29–49.
  17. Costero A, Grayson MA, 1996. Experimental transmission of Powassan virus (Flaviviridae) by Ixodes scapularis ticks (Acari:Ixodidae). Am J Trop Med Hyg 55: 536–546. [Google Scholar]
  18. Kuno G, Artsob H, Karabatsos N, Tsuchiya KR, Chang GJ, 2001. Genomic sequencing of deer tick virus and phylogeny of Powassan-related viruses of North America. Am J Trop Med Hyg 65: 671–676. [Google Scholar]
  19. Beasley DW, Suderman MT, Holbrook MR, Barrett AD, 2001. Nucleotide sequencing and serological evidence that the recently recognized deer tick virus is a genotype of Powassan virus. Virus Res 79: 81–89. [Google Scholar]
  20. Sardelis MR, Turell MJ, Dohm DJ, O’Guinn ML, 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7: 1018–1022. [Google Scholar]
  21. Armstrong PM, Rico-Hesse R, 2001. Differential susceptibility of Aedes aegypti to infection by the American and Southeast Asian genotypes of dengue type 2 virus. Vector Borne Zoonotic Dis 1: 159–168. [Google Scholar]
  22. Boromisa RD, Rai KS, Grimstad PR, 1987. Variation in the vector competence of geographic strains of Aedes albopictus for dengue 1 virus. J Am Mosq Control Assoc 3: 378–386. [Google Scholar]
  23. Anonymous, 2001. Outbreak of Powassan encephalitis – Maine and Vermont, 1999–2001. MMWR Morb Mortal Wkly Rep 50: 761–764. [Google Scholar]

Data & Media loading...

  • Received : 10 Feb 2003
  • Accepted : 06 Apr 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error