Volume 71, Issue 2_suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Environmental management of mosquito resources is a promising approach with which to control malaria, but it has seen little application in Africa for more than half a century. Here we present a kinetic model of mosquito foraging for aquatic habitats and vertebrate hosts that allows estimation of malaria transmission intensity by defining the availability of these resources as the rate at which individual mosquitoes encounter and use them. The model captures historically observed responses of malaria transmission to environmental change, highlights important gaps in current understanding of vector ecology, and suggests convenient solutions. Resource availability is an intuitive concept that provides an adaptable framework for models of mosquito population dynamics, gene flow, and pathogen transmission that can be conveniently parameterized with direct field measurements. Furthermore, the model presented predicts that drastic reductions of malaria transmission are possible with environmental management and elucidates an ecologic basis for previous successes of integrated malaria control in Africa before the advent of DDT or chloroquine. Environmental management for malaria control requires specialist skills that are currently lacking in sub-Saharan Africa where they are needed most. Infrastructure and human capacity building in clinical, public health, and environmental disciplines should therefore be prioritized so that growing financial support for tackling malaria can be translated into truly integrated control programs.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Snow RW, Craig M, Deichmann U, Marsh K, 1999. Estimating mortality, morbidity and disability due to malaria among Africa’s non-pregnant population. Bull World Health Organ 77: 624–640. [Google Scholar]
  2. Sachs J, Malaney P, 2002. The economic and social burden of malaria. Nature 415: 680–685. [Google Scholar]
  3. Breman JG, Egan A, Keutsch GT, 2001. The intolerable burden of malaria: a new look at the numbers. Am J Trop Med Hyg 64 (Suppl 1): iv–vii. [Google Scholar]
  4. Craig MH, Snow RW, le Sueur D, 1999. A climate-based distribution model of malaria transmssion in sub-Saharan Africa. Parasitol Today 15: 105–111. [Google Scholar]
  5. Beier JC, Killeen GF, Githure J, 1999. Short report: Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg 61: 109–113. [Google Scholar]
  6. Korenromp EL, Williams BG, Gouws E, Dye C, Snow RW, 2003. Measurement of trends in childhood malaria mortality in Africa: an assessment of progress towards targets based on verbal autopsy. Lancet Infect Dis 3: 349–358. [Google Scholar]
  7. Hay SI, Rogers DJ, Toomer JF, Snow RW, 2000. Annual Plasmodium falciparum entomological inoculation rates across Africa: literature survey, internet access and review. Trans R Soc Trop Med Hyg 94: 113–127. [Google Scholar]
  8. Utzinger J, Tozan Y, Doumani F, Singer BH, 2002. The economic payoffs of integrated malaria control in the Zambian copper-belt between 1930 and 1950. Trop Med Int Health 7: 657–677. [Google Scholar]
  9. Spielman A, Weerasuriya S, Malaney P, Kiszewski AE, Willis D, Pollack RJ, Teklehaimot A, 2002. Industrial Anti-Malaria Policies. Boston: Harvard School of Public Health, 31.
  10. Martin C, Curtis B, Fraser C, Sharp B, 2002. The use of a GIS-based malaria information system for malaria research and control in South Africa. Health Place 8: 227–236. [Google Scholar]
  11. Ross R, 1911. The Prevention of Malaria. London: Murray.
  12. Kitron U, Spielman A, 1989. Suppression of transmission of malaria through source reduction: antianopheline measures applied in Israel, the United States, and Italy. Rev Infect Dis 11: 391–406. [Google Scholar]
  13. Service MW, 1997. Mosquito (Diptera: Culicidae) dispersal-the long and short of it. J Med Entomol 34: 579–588. [Google Scholar]
  14. Service MW, 1991. Agricultural development and arthropod-borne diseases: a review. Rev Saude Publica 25: 165–178. [Google Scholar]
  15. Shiff C, 2002. Integrated approach to malaria control. Clin Microbiol Rev 15: 278–298. [Google Scholar]
  16. Ault SK, 1994. Environmental management: a re-emerging vector control strategy. Am J Trop Med Hyg 50: 35–49. [Google Scholar]
  17. Rozendaal JA, 1997. Vector Control. Methods for Use by Individuals and Communities. Geneva: World Health Organization.
  18. Pampana E, 1963. A Textbook of Malaria Eradication. London: Oxford University Press.
  19. Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GEL, Emerson PM, 2003. Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health 8: 512–517. [Google Scholar]
  20. Lindsay SW, Emerson PM, Charlwood JD, 2002. Reducing malaria transmission by mosquito-proofing homes. Trends Parasitol 18: 510–514. [Google Scholar]
  21. Utzinger J, Tozan Y, Singer BH, 2001. Efficacy and cost effectiveness of environmental management for malaria control. Trop Med Int Health 6: 677–687. [Google Scholar]
  22. Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BGJ, 2002. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis 2: 618–627. [Google Scholar]
  23. Utzinger J, Tanner M, Kammen DM, Killeen GF, Singer BH, 2002. Integrated programme is key to malaria control. Nature 419: 431. [Google Scholar]
  24. Watson M, 1953. African Highway: The Battle for Health in Central Africa. London: John Murray.
  25. Kilama WL, 1994. Malaria in Tanzania: past and present. Proceedings of the 11th Annual Joint Scientific Conference with a Seminar on Malaria Control Research. Arusha, Tanzania: National Institute for Medical Research.
  26. Kilama WL, 1991. Control of arthropods of public health importance. Mwaluko GMP, Kilama WL, Mandara PM, Murru M, MacPherson CNL, eds. Health and Disease in Tanzania. London: Harper Collins Academic, 199–218.
  27. Bang YH, Mrope FM, Sabuni IB, 1977. Changes in mosquito populations associated with urbanization in Tanzania. East Afr Med J 54: 403–411. [Google Scholar]
  28. Bang YH, Sabuni IB, Tonn RJ, 1975. Integrated control of urban mosquitoes in Dar es Salaam using community sanitation supplemented by larviciding. East Afr Med J 52: 578–588. [Google Scholar]
  29. Yamagata Y, 1996. Review of Tanzania-Japan Urban Malaria Control Project (UMCP) in Dar es Salaam and Tanga (1988–1996). Dar es Salaam, Tanzania: Japan International Cooperation Agency, 46.
  30. Castro MC, Yamagata Y, Mtasiwa D, Tanner M, Utzinger J, Keiser J, Singer BH, 2004. Integrated urban malaria control: a case study in Dar es Salaam, Tanzania. Am J Trop Med Hyg 71 (Suppl 2): 103–117. [Google Scholar]
  31. Robert V, MacIntyre K, Keating J, Trape JF, Duchemin JB, Warren M, Beier JC, 2003. Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg 68: 169–176. [Google Scholar]
  32. Keiser J, Utzinger J, Castro MC, Smith TA, Tanner M, Singer BH, 2004. Urbanization in sub-Saharan Africa and implication for malaria control. Am J Trop Med Hyg 71 (Suppl 2): 118–127. [Google Scholar]
  33. Cohen JE, Gurtler RE, 2001. Modeling household transmission of American trypanosomiasis. Science 293: 694–698. [Google Scholar]
  34. Seyoum A, Killeen GF, Kabiru EW, Knols BGJ, Hassanali A, 2003. Field efficacy of thermally expelled or live potted repellent plants against African malaria vectors in western Kenya. Trop Med Int Health 8: 1005–1011. [Google Scholar]
  35. Seyoum A, Hassanali A, Kabiru EW, Palsson K, Killeen GF, Luande W, Knols BGJ, 2002. Traditional use of mosquito repellent plants in Western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: Ethnobotanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hyg 96: 225–231. [Google Scholar]
  36. Seyoum A, Hassanali A, Kabiru EW, Killeen GF, Luande W, Knols BGJ, 2002. Repellency of live potted plants against Anopheles gambiae from human baits in semi-field experimental huts. Am J Trop Med Hyg 67: 191–195. [Google Scholar]
  37. Seyoum A, Balcha F, Balkew M, Ali A, Gebre-Michael T, 2002. Impact of cattle keeping on human biting rate of anopheline mosquitoes and malaria transmission around Ziway, Ethiopia. East Afr Med J 79: 485–489. [Google Scholar]
  38. Khan ZR, Ampong-Nyarko K, Chiliswa P, Hassanali A, Kimani S, Lwande W, Overholt WA, Pickett JA, Smart LE, Wadhams LJ, Woodcock CM, 1997. Intercropping increases parasitism of pests. Nature 388: 631–632. [Google Scholar]
  39. Sota T, Mogi M, 1989. Effectiveness of zooprophylaxis in malaria control: a theoretical inquiry with a model for mosquito populations with two bloodmeal hosts. Med Vet Entomol 3: 337–345. [Google Scholar]
  40. Killeen GF, McKenzie FE, Foy BD, Bogh C, Beier JC, 2001. The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by mosquito populations. Trans R Soc Trop Med Hyg 95: 469–476. [Google Scholar]
  41. Saul A, 2003. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malaria J 2: 32. [Google Scholar]
  42. Killeen GF, Knols BGJ, Gu W, 2003. Taking malaria transmission out of the bottle: implications of mosquito dispersal for vector control interventions. Lancet Infect Dis 3: 297–303. [Google Scholar]
  43. McKenzie FE, Baird JK, Beier JC, Lal AA, Bossert WH, 2002. A biological basis for integrated malaria control. Am J Trop Med Hyg 67: 571–577. [Google Scholar]
  44. Donnelly MJ, Simard F, Lehmann T, 2002. Evolutionary studies of malaria vectors. Trends Parasitol 18: 75–80. [Google Scholar]
  45. Scott TW, Takken W, Knols BGJ, Boete C, 2002. Ecology of genetically modified mosquitoes. Science 298: 117–119. [Google Scholar]
  46. Bell WJ, 1990. Searching behavior patterns in insects. Annu Rev Entomol 35: 447–467. [Google Scholar]
  47. Browne LG, 1993. Physiologically induced changes in resource-oriented behaviour. Annu Rev Entomol 38: 1–25. [Google Scholar]
  48. Hess AD, Hayes RO, Tempelis CH, 1968. The use of the forage ratio technique in mosquito host preference studies. Mosq News 28: 386–389. [Google Scholar]
  49. Kay BH, Boreham PFL, Edman JD, 1979. Application of the “Feeding Index” concept to studies of mosquito host-feeding patterns. Mosq News 39: 68–73. [Google Scholar]
  50. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC, 2000. A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62: 535–544. [Google Scholar]
  51. Saul AJ, Graves PM, Kay BH, 1990. A cyclical feeding model for pathogen transmission and its application to determine vectorial capacity from vector infection rates. J Appl Ecol 27: 123–133. [Google Scholar]
  52. Smith T, Charlwood JD, Kihonda J, Mwankusye S, Billingsley P, Meuwissen J, Lyimo E, Takken W, Teuscher T, Tanner M, 1993. Absence of seasonal variation in malaria parasitemia in an area of intense seasonal transmission. Acta Trop 54: 55–72. [Google Scholar]
  53. Charlwood JD, Smith T, Kihonda J, Heiz B, Billingsley PF, Takken W, 1995. Density independent feeding success of malaria vectors (Diptera: Culicidae) in Tanzania. Bull Entomol Res 85: 29–35. [Google Scholar]
  54. Charlwood JD, Smith T, Billingsley PF, Takken W, Lyimo EOL, Meuwissen JHET, 1997. Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of Plasmodium falciparum in humans. Bull Entomol Res 87: 445–453. [Google Scholar]
  55. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC, 2000. The potential impacts of integrated malaria transmission control on entomologic inoculation rate in highly endemic areas. Am J Trop Med Hyg 62: 545–551. [Google Scholar]
  56. Soper FL, Wilson DB, 1943. Anopheles gambiae in Brazil: 1930 to 1940. New York: The Rockefeller Foundation.
  57. Shousha AT, 1948. Species-eradication: The eradication of Anopheles gambiae from Upper Egypt, 1942–1945. Bull World Health Organ 1: 309–353. [Google Scholar]
  58. Clarke SE, Bogh C, Brown RC, Pinder M, Walraven GEL, Lindsay SW, 2001. Untreated nets protect against malaria infection. Trans R Soc Trop Med Hyg 95: 457–463. [Google Scholar]
  59. Guyatt HL, Snow RW, 2002. The cost of not treating bednets. Trends Parasitol 18: 12–16. [Google Scholar]
  60. Hii JLK, Smith T, Vounatsou P, Alexander N, Mai A, Ibam E, Alpers MP, 2001. Area effects of bednet use in a malaria-endemic area in Papua New Guinea. Trans R Soc Trop Med Hyg 95: 7–13. [Google Scholar]
  61. Hadis M, Lulu M, Makonnen Y, Asfaw T, 1997. Host choice by indoor-resting Anopheles arabiensis in Ethiopia. Trans R Soc Trop Med Hyg 91: 376–378. [Google Scholar]
  62. Habtewold T, Walker AR, Curtis CF, Osir EO, Thapa N, 2001. The feeding behaviour and Plasmodium infection of Anopheles mosquitoes in southern Ethiopia in relation to the use of insecticide-treated livestock for malaria control. Trans R Soc Trop Med Hyg 95: 584–586. [Google Scholar]
  63. MacDonald G, 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.
  64. Canyon DV, Hii JL, 1997. The gecko: an environmentally friendly biological agent for mosquito control. Med Vet Entomol 11: 319–323. [Google Scholar]
  65. Ghebreyesus TA, Haile M, Witten KH, Getachew A, Yohannes M, Lindsay SW, Byass P, 2000. Household risk factors for malaria among children in the Ethiopian highlands. Trans R Soc Trop Med Hyg 94: 17–21. [Google Scholar]
  66. Bogh C, Clarke SE, Pinder M, Sanyang F, Lindsay SW, 2001. Effect of passive zooprophylaxis on malaria transmission in The Gambia. J Med Entomol 38: 822–828. [Google Scholar]
  67. Bogh C, Clarke SE, Walraven GEL, Lindsay SW, 2002. Zooprophylaxis: artefact or reality? A paired-cohort study of the effect of passive zooprophlaxis in malaria in The Gambia. Trans R Soc Trop Med Hyg 96: 593–596. [Google Scholar]
  68. Sousa CA, Pinto J, Almeida APG, Ferreira C, Do Rosario VE, Charlwood JD, 2001. Dogs as a favored host choice of Anopheles gambiae sensu stricto (Diptera: Culicidae) of Sao Tome, West Africa. J Med Entomol 38: 122–125. [Google Scholar]
  69. Service MW, 1977. A critical review of procedures for sampling populations of adult mosquitoes. Bull Entomol Res 67: 343–382. [Google Scholar]
  70. Carey JR, 2001. Insect biodemography. Annu Rev Entomol 46: 79–110. [Google Scholar]
  71. Ramsay S, 2002. Global Fund makes historic first round of payments. Lancet 359: 1581–1582. [Google Scholar]
  72. Killeen GF, Knols BGJ, Fillinger U, Beier JC, Gouagna LC, 2002. Interdisciplinary malaria vector research and training for Africa. Trends Parasitol 18: 433–434. [Google Scholar]

Data & Media loading...

  • Received : 11 Sep 2003
  • Accepted : 06 Feb 2004

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error