1921
Volume 70, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

To describe the midgut microbial diversity and the candidate bacteria for the genetic manipulation for the generation of transgenic mosquitoes refractory to transmission of diseases, the microbiota of wild mosquito midgut was studied using a conventional culture technique and analysis of a 16S ribosomal RNA (rRNA) gene sequence library. The culturable microbiota was identified as , and an unidentified bacterium from the host . The 16S rRNA gene library was composed of 46% unidentified and uncultured bacteria, 41% spp., and 13% spp. The coverage calculated for the 150 clones was 83.3%. Thus, the probability of the next cloned sequence falling in a novel operational taxonomic unit (not yet observed) was 16.7%. The majority of the cultured isolates and the 16S rRNA gene library clones belonged to the γ-proteobacteria class. Most of the bacteria have been previously reported to inhabit the midgut of different mosquito species. Therefore, the results of this study indicate that different mosquito species harbor common representatives of the microbiota that may be the potential candidates for genetic manipulation to control the disease transmission capabilities of the host.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2004.70.597
2004-06-01
2017-09-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/70/6/0700597.html?itemId=/content/journals/10.4269/ajtmh.2004.70.597&mimeType=html&fmt=ahah

References

  1. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB, 1997. Prevention of insect borne diseases: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 94 : 3274–3278.
  2. Carlson J, 1996. Genetic manipulation of mosquitoes: an approach to controlling disease. Trends Biotechnol 1 : 447–448.
  3. Ghosh AK, Ribolla PEM, Jacobs-Lorena M, 2001. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci USA 98 : 13278–13281.
  4. Johnson BW, Olson KE, Allen-Miura T, Rayms-Keller A, Carlson JO, Cates CJ, Jasinskiene N, James AA, Beaty BJ, Higgs S, 1999. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA. Proc Natl Acad Sci USA 96 : 13399–13403.
  5. Olson KE, Higgs S, Gaines PJ, Powers AM, Davis BS, Kamrud KI, Carlson JO, Blair CD, Beaty BJ, 1996. Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science 272 : 884–886.
  6. DeMaio J, Pumpuni CB, Kent M, Beier JC, 1996. The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens and Psorophora columbiae mosquitoes. Am J Trop Med Hyg 54 : 219–223.
  7. Beier MS, Pumpuni CB, Bizio JC, Davis JR, 1994. Effect of paraaminobenzenoic acid, insulin and gentamicin on Plasmodium falciparum development in Anopheline mosquitoes (Diptera: Culicidae). J Med Entomol 31 : 561–565.
  8. Chao J, Wistreich GA, 1959. Microbial isolations from the midgut of Culex tarsalis Coquillett. J Insect Pathol 1 : 311–318.
  9. Chao J, Wistreich GA, 1960. Microorganisms from the midgut of larval and adult Culex quinquefasciatus Say. J Insect Pathol 2 : 220–224.
  10. Ferguson MJ, Micks DW, 1961. Microorganisms associated with mosquitoes: bacteria isolated from adult Culex fratigans Wiedemann. J Insect Pathol 3 : 112–119.
  11. Jadin J, 1965. Les bacteries photosynthetiques pourpres peuventelles jouer un role dans la sporogonie des Plasmodium? Bull Acad Natl Med 149 : 470–472.
  12. Jadin J, Vincke IH, Dunjie A, Delville JP, Wery M, Bafort J, Scheepers-Diva M, 1966. Role des Pseudomonas dans la sporogonie de Phematozoarie du paludisme chez le moustique. Bull Soc Pathol Exot 59 : 514–525.
  13. Seitz HM, Maier WA, Rottok M, Becker-Feldmann H, 1987. Concomitant infections of Anopheles stephensi with Plasmodium berghei and Serratia marcescens: additive detrimental effects. Zentralbl Bakteriol Hyg 266 : 155–166.
  14. Vasanthi V, Hoti SL, 1992. Microbial flora in gut of Culex quinquefasciatus breeding in cess pits. Southeast Asian J Trop Med Public Health 2 : 312–317.
  15. Olson GJ, Woese CR, Overbeek R, 1994. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176 : 1–6.
  16. Pidiyar VJ, Kaznowski A, Badri Narayan N, Patole MS, Shouche YS, 2002. Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus. Int J Syst Evol Microbiol 52 : 1723–1728.
  17. Pidiyar VJ, Jangid K, Patole MS, Shouche YS, 2003. Detection and phylogenetic affiliation of Wolbachia sp. from Indian mosquitoes Culex quinquefasciatus and Aedes albopictus. Curr Sci 84 : 1136–1139.
  18. Sambrook J, Fritsch EF, Maniatis T, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  19. Lee SY, Rasheed S, 1990. A simple procedure for maximum yield of high quality plasmid DNA. Biotechniques 9 : 676–679.
  20. Hauben L, Vauterin L, Swings J, Moore ERB, 1997. Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J Syst Bacteriol 47 : 328–335.
  21. Stackebrandt E, Rainey FA, 1995. Partial and complete 16S rDNA sequences, their use in generation of 16S rDNA phylogenetic trees and their implications in molecular ecological studies. Akkermans ADL, van Elsas JD, de Bruijn FJ, eds. Molecular Microbial Ecology Manual. Volume 3.1.1. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1–17.
  22. Kumar S, Tamura K, Jakobsen IB, Nei M, 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17 : 1244–1245.
  23. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR, 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82 : 6955–6959.
  24. Schimdt TM, DeLong EF, Pace NR, 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173 : 4371–4378.
  25. Hugenholtz P, Goebel BM, Pace NR, 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180 : 4765–4774.
  26. Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R, 1997. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63 : 2802–2813.
  27. Stackebrandt E, Goebel BM, 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44 : 846–849.
  28. Good IJ, 1953. The population frequencies of species and the estimation of population parameters. Biometrica 40 : 237–264.
  29. Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackebrandt E, 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5 : 23–33.
  30. Takami H, Inoue A, Fuji F, Horikoshi K, 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152 : 279–285.
  31. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH, 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63 : 2884–2896.
  32. Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW, 2002. Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68 : 2214–2228.
  33. Valinsky L, Della Vedova G, Scupham AJ, Alvey S, Figueroa A, Yin B, Hartin RJ, Chrobak M, Crowley DE, Jiang T, Borneman J, 2002. Analysis of bacterial community composition by oligonucleotide Fingerprinting of rRNA genes. Appl Environ Microbiol 68 : 3243–3250.
  34. Miller SG, Campbell BC, Becnel J, Ehrman L, 1995. Bacterial entomopathogens from the Drosophila paulistorum semispecies complex. J Invertebr Pathol 65 : 125–131.
  35. Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ, 2002. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbial Ecol 39 : 33–39.
  36. Sghir A, Doré J, Mackie RI, 1999. Molecular diversity and phylogeny of human colonic bacteria. Bell CR, Brylinski M, Green PJ, eds. Microbial Biosystems: New Frontiers. Proceedings of the Eighth International Symposium on Microbial Ecology. Halifax, Nova Scotia, Canada. Kentville, Nova Scotia, Canada: Atlantic Canada Society for Microbial Ecology, Canada.
  37. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J, 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65 : 4799–4807.
  38. Dimopolos G, Richman A, Muller HM, Kafatos FC, 1997. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci USA 94 : 11508–11513.
  39. Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC, 1996. Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg 54 : 214–218.
  40. Mourya DT, Pidiyar VJ, Patole MS, Gokhale MD, Shouche YS, 2002. Effect of midgut bacterial flora of Aedes aegypti on the susceptibility of mosquitoes to Dengue viruses. Dengue Bull 26 : 190–194.
  41. Mourya DT, Gokhale MD, Pidiyar VJ, Barde PV, Patole MS, Mishra AC, Shouche YS, 2002. Study of the effect of the mid-gut bacterial flora of Culex quinquefasciatus on the susceptibility of mosquitoes to Japanese Encephalitis virus. Acta Virol 46 : 257–260.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2004.70.597
Loading
/content/journals/10.4269/ajtmh.2004.70.597
Loading

Data & Media loading...

  • Received : 06 Oct 2003
  • Accepted : 03 Nov 2003

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error