Volume 70, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Chagas disease, a major public health problem in Latin America, is caused by the protozoan parasite and transmitted by hematophageous insects from the Triatominae subfamily. Control of this disease is based on domestic vector control with insecticides and improvements in housing. As with other vector-borne diseases, the identification of areas of high risk of disease transmission is a major prerequisite for the planning and implementation of cost-effective control programs. In this study, we explored the relationship between geographic distribution and bioclimatic factors in the Yucatán peninsula in Mexico, using geographic information systems, and developed predictive models of domestic abundance and of its infection rates by . These predictions were then used to build the first natural transmission risk map for Chagas disease in the Yucatán peninsula, a tool that should prove very valuable for the implementation of effective vector control programs in the region.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO, 1996. Chagas disease. Progress towards elimination of transmission. Wkly Epidemiol Rec 71 : 12–15. [Google Scholar]
  2. Dumonteil E, 1999. Update on Chagas’ disease in Mexico. Salud Publica Mex 41 : 322–327. [Google Scholar]
  3. WHO, 1998. Chagas disease: Central American initiative launched. TDR News 55 : 6. [Google Scholar]
  4. Dumonteil E, Gourbiere S, Barrera-Perez M, Rodriguez-Felix E, Ruiz-Piña H, Baños-Lopez O, Ramirez-Sierra MJ, Menu F, Rabinovich JE, 2002. Geographic distribution of Triatoma dimidiata and transmission dynamics of Trypanosoma cruzi in the Yucatán peninsula of Mexico. Am J Trop Med Hyg 67 : 176–183. [Google Scholar]
  5. Ramsey JM, Ordonez R, Cruz-Celis A, Alvear AL, Chavez V, Lopez R, Pintor JR, Gama F, Carrillo S, 2000. Distribution of domestic triatominae and stratification of Chagas disease transmission in Oaxaca, Mexico. Med Vet Entomol 14 : 19–30. [Google Scholar]
  6. Zeledon R, Ugalde JA, Paniagua LA, 2001. Entomological and ecological aspects of six sylvatic species of triatomines (Hemiptera, Reduviidae) from the collection of the National Biodiversity Institute of Costa Rica, Central America. Mem Inst Oswaldo Cruz 96 : 757–764. [Google Scholar]
  7. Galvao C, Jurberg J, Carcavallo RU, Segura CA, Galindez Giron I, Curto de Casas SI, 1998. Distribuição geográfica e dispersão alti-latitudinal de aluns gêneros e espécies da tribo Triatomini Jeannel, 1919 (Hemiptera, Reduviidae, Triatominae). Mem Inst Oswaldo Cruz 93 : 33–37. [Google Scholar]
  8. Carcavallo RU, 1999. Climatic factors related to Chagas disease transmission. Mem Inst Oswaldo Cruz 94 (Suppl 1): 367–369. [Google Scholar]
  9. Rejmankova E, Roberts DR, Pawley A, Manguin S, Polanco J, 1995. Prediction of Anopheles albimanus densities in villages based on distances to remotely sensed larval habitats. Am J Trop Med Hyg 53 : 482–488. [Google Scholar]
  10. Rogers DJ, Randolph SE, Snow RW, Hay SI, 2002. Satelitte imagery in the study and forecast of malaria. Nature 415 : 710–715. [Google Scholar]
  11. Snow RW, Craig MH, Deichmann U, le Sueur D, 1999. A preliminary continental risk map for malaria mortality among African children. Parasitol Today 15 : 99–104. [Google Scholar]
  12. Beck LR, Rodriguez MH, Dister SW, Rodriguez AD, Rejmankova E, Ulloa A, Meza RA, Roberts DR, Paris JF, Spanner MA, Washino RK, Hacker C, Legters LJ, 1994. Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. Am J Trop Med Hyg 51 : 271–280. [Google Scholar]
  13. Thomson MC, Connor SJ, D’Alessandro U, Rowlingson Z, Diggle P, Cresswell M, Greenwood B, 1999. Predicting malaria infection on Gambian children from satellite data and bed net use surveys: the importance of spatial correlation in the interpretation of the results. Am J Trop Med Hyg 61 : 2–8. [Google Scholar]
  14. Rogers DJ, Randolph SE, 1991. Mortality rates and population density of tsetse flies correlated with satellite imagery. Nature 351 : 739–741. [Google Scholar]
  15. Rogers DJ, Williams BG, 1993. Monitoring trypanosomiasis in space and time. Parasitology 106 (Suppl): S77–S92. [Google Scholar]
  16. Brooker S, Hay SI, Bundy DA, 2002. Tools from ecology: useful for evaluating infection risk models? Trends Parasitol 18 : 70–74. [Google Scholar]
  17. Kristensen TK, Malone JB, McCarroll JC, 2001. Use of satellite remote sensing and geographic information systems to model the distribution and abundance of snail intermediate hosts in Africa: a preliminary model for Biomphalaria pfeifferi in Ethiopia. Acta Trop 79 : 73–78. [Google Scholar]
  18. Elnaiem DA, Schorscher J, Bendall A, Obsomer V, Osman ME, Mekkawi AM, Connor SJ, Ashford RW, Thomson MC, 2003. Risk mapping of visceral leishmaniasis: the role of local variation in rainfall and altitude on the presence and incidence of kalaazar in eastern Sudan. Am J Trop Med Hyg 68 : 10–17. [Google Scholar]
  19. Elnaiem DA, Connor SJ, Thomson MC, Hassan MM, Hassan HK, Aboud MA, Ashford RW, 1998. Environmental determinants of the distribution of Phlebotomus orientalis in Sudan. Ann Trop Med Parasitol 92 : 877–887. [Google Scholar]
  20. Cross ER, Newcomb WW, Tucker CJ, 1996. Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia. Am J Trop Med Hyg 54 : 530–536. [Google Scholar]
  21. Thomson MC, Elnaiem DA, Ashford RW, Connor SJ, 1999. Towards a kala azar risk map for Sudan: mapping the potential distribution of Phlebotomus orientalis using digital data of environmental variables. Trop Med Int Health 4 : 105–113. [Google Scholar]
  22. Kitron U, 1998. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35 : 435–445. [Google Scholar]
  23. Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR, Stancil A, Beck L, Bobo M, Kitron U, 2002. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg Infect Dis 8 : 289–297. [Google Scholar]
  24. Brownstein JS, Holford R, Fish D, 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111 : 1152–1157. [Google Scholar]
  25. Malone JB, Bergquist NR, Huh OK, Bavia ME, Bernardi M, El Bahy MM, Fuentes MV, Kristensen TK, McCarroll JC, Yilma JM, Zhou XN, 2001. A global network for the control of snail-borne disease using satellite surveillance and geographic information systems. Acta Trop 79 : 7–12. [Google Scholar]
  26. Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM, Pascual M, Pielke R Jr, Pizer W, Pringle C, Reid WV, Rose KA, Sala O, Schlesinger WH, Wall DH, Wear D, 2001. Ecological forecasts: an emerging imperative. Science 293 : 657–660. [Google Scholar]
  27. Rushton G, 2003. Public health, GIS, and spatial analytic tools. Annu Rev Public Health 24 : 43–56. [Google Scholar]
  28. Gorla DE, 2002. Variables ambientales registradas por sensores remotos como indicadores de la distribución geográfica de Triatoma infestans. Ecología Austral 12 : 117–127. [Google Scholar]
  29. Peterson AT, Sanchez-Cordero V, Beard CB, Ramsey JM, 2002. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerg Infect Dis 8 : 662–667. [Google Scholar]
  30. Costa J, Peterson AT, Beard CB, 2002. Ecologic niche modeling and differentiation of populations of Triatoma brasiliensis Neiva, 1911, the most important Chagas’ disease vector in northeastern Brazil (hemiptera, reduviidae, triatominae). Am J Trop Med Hyg 67 : 516–520. [Google Scholar]
  31. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D, 1996. The NCEP/NCAR 40 year reanalysis project. Bull Am Meteor Soc 77 : 437–471. [Google Scholar]
  32. Bargues MD, Marcellina A, Dujardin JP, Mas-Coma S, 2002. Triatomine vector of Trypanosoma cruzi: a molecular perspective based on nuclear ribosomal DNA markers. Trans R Soc Trop Med Hyg 96 (Supp. 1): 159–164. [Google Scholar]
  33. Zeledón R, 1981. El Triatoma dimidiata (Latreille, 1811) y su Relación con la Enfermedad de Chagas. San Jose, Costa Rica: Universidad Estatal a Distancia.
  34. Zeledon R, Montenegro VR, Zeledon O, 2001. Evidence of colonization of man-made ecotopes by Triatoma dimidiata (Latreille, 1811) in Costa Rica. Mem Inst Oswaldo Cruz 96 : 659–660. [Google Scholar]
  35. Monroy C, Rodas A, Mejia M, Rosales R, Tabaru Y, 2003. Epidemiology of Chagas disease in Guatemala: infection rate of Triatoma dimidiata, Triatoma nitida and Rhodnius prolixus (Hemiptera, Reduviidae) with Trypanosoma cruzi and Trypanosoma rangeli (Kinetoplastida, Trypanosomatidae). Mem Inst Oswaldo Cruz 98 : 305–310. [Google Scholar]
  36. Asin S, Catala S, 1995. Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol 81 : 1–7. [Google Scholar]
  37. Randolph SE, 2000. Ticks and tick-borne disease systems in space and from space. Adv Parasitol 47 : 217–245. [Google Scholar]
  38. Estrada-Peña A, 2001. Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari: Ixodidae) in northern Spain. J Med Entomol 38 : 361–370. [Google Scholar]
  39. Cohen J, Gürtler RE, 2001. Modeling household transmission of American trypanosomiasis. Science 293 : 694–698. [Google Scholar]

Data & Media loading...

  • Received : 29 Oct 2003
  • Accepted : 26 Dec 2003

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error