Volume 70, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


expresses a salivary protein called maxadilan (MAX) that functions to dilate vertebrate blood vessels and thereby to facilitate the sand fly’s acquisition of blood. We hypothesized that antibodies specific for one of many MAX variants would inhibit vasodilatory function of that variant. and experiments showed that antibodies against a specific MAX variant decreased vasodilatory function. More specifically, antibodies against MAX blocked vasodilation of a constricted rabbit aorta. Additionally, a strain of with a nearly uniform MAX genotype, obtained a larger blood meal from naive BALB/c mice compared with mice that were either immunized with a homologous MAX genotype or sensitized to bites of flies from the same strain. Those flies taking blood from mice sensitized by sand fly bites also laid significantly fewer eggs than when they took blood from naive mice. These results have potential epidemiologic importance in light of the potential use of MAX in a vaccine or as part of a diagnostic test because they imply that a uniform MAX genotype is selected against by the vertebrate host immune response and that antigenic diversity is selected for.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Magnarelli LA, Modi GB, Tesh RB, 1984. Follicular development and parity in phlebotomine sand flies (Diptera: Psychodidae). J Med Entomol 21 : 681–689. [Google Scholar]
  2. Ready PD, 1979. Factors affecting egg production of laboratory-bred Lutzomyia longipalpis (Diptera: Psychodidae). J Med Entomol 16 : 413–423. [Google Scholar]
  3. Charlab R, Valenzuela JG, Rowton ED, Ribeiro JM, 1999. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci U S A 96 : 15155–15160. [Google Scholar]
  4. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG, 2001. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 67 : 5226–5230. [Google Scholar]
  5. Lanzaro GC, Lopes AH, Ribeiro JM, Shoemaker CB, Warburg A, Soares M, Titus RG, 1999. Variation in the salivary peptide, maxadilan, from species in the Lutzomyia longipalpis complex. Insect Mol Biol 8 : 267–275. [Google Scholar]
  6. Milleron RS, Mutebi JP, Valle S, Montoya A, Yin H, Soong L, Lanzaro GC, 2003. Antigenic diversity in maxadilan, a salivary protein from the sand fly vector of American visceral leishmaniasis. Am J Trop Med Hyg 70 : [Google Scholar]
  7. Lincoln R, Boxshall G, Clark P, 1998. A Dictionary of Ecology, Evolution and Systematics. Cambridge: Cambridge University Press.
  8. Futuyma DJ, 1998. Evolutionary Biology. Sunderland, MA: Sinauer Associates, Inc.
  9. Mathews GV, Sidjanski S, Vanderberg JP, 1996. Inhibition of mosquito salivary gland apyrase activity by antibodies produced in mice immunized by bites of Anopheles stephensi mosquitoes. Am J Trop Med Hyg 55 : 417–423. [Google Scholar]
  10. Kamhawi S, 2000. The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect 2 : 1765–1773. [Google Scholar]
  11. Kemp DH, Pearson RD, Gough JM, Willadsen P, 1989. Vaccination Against Boophilus microplus: localization of antigens on tick gut cells and their interaction with the host immune system. Exp Appl Acarol 7 : 43–58. [Google Scholar]
  12. Del Pino FA, Brandelli A, Gonzales JC, Henriques JA, Dewes H, 1998. Effect of antibodies against beta-N-acetylhexosaminidase on reproductive efficiency of the bovine tick Boophilus microplus. Vet Parasitol 79 : 247–255. [Google Scholar]
  13. Kaaya GP, Alemu P, 1982. Fecundity and survival of Testse maintained on immunized rabbits. Insect Sci Applicat 3 : 237–241. [Google Scholar]
  14. Wikel S, 1996. Host immunity to ticks. Annu Rev Entomol 41 : 1–22. [Google Scholar]
  15. Moro O, Lerner EA, 1997. Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. J Biol Chem 272 : 966–970. [Google Scholar]
  16. Grevelink SA, Osborne J, Loscalzo J, Lerner EA, 1995. Vasorelaxant and second messenger effects of maxadilan. J Pharmacol Exp Ther 272 : 33–37. [Google Scholar]
  17. Soong L, Duboise SM, Kima P, McMahon-Pratt D, 1995. Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infect Immun 63 : 3559–3566. [Google Scholar]
  18. Moncada S, Palmer RM, Higgs EA, 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43 : 109–142. [Google Scholar]
  19. Post RJ, Flook PK, Millest AL, 1993. Methods for the preservation of insects for DNA studies. Biochem Syst Ecol 21 : 85–92. [Google Scholar]
  20. Warburg A, Saraiva E, Lanzaro GC, Titus RG, Neva F, 1994. Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. Philos Trans R Soc Lond B Biol Sci 345 : 223–230. [Google Scholar]
  21. Sheffield VC, Beck JS, Kwitek AE, Sandstrom DW, Stone EM, 1993. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16 : 325–332. [Google Scholar]
  22. Ghosh KN, Mukhopadhyay J, 1998. The effect of anti-sandfly saliva antibodies on Phlebotomus argentipes and Leishmania donovani. Int J Parasitol 28 : 275–281. [Google Scholar]
  23. Koella JC, Packer MJ, 1996. Malaria parasites enhance blood-feeding of their naturally infected vector Anopheles punculatus. Parasitology 113 : 105–109. [Google Scholar]
  24. Ready PD, 1978. The feeding habits of laboratory-bred Lutzomyia longipalpis (Diptera: Psychodidae). J Med Entomol 14 : 545–552. [Google Scholar]
  25. Sadlova J, Reishig J, Volf P, 1998. Prediuresis in female Phlebotomus sandflies (Diptera: Psychodidae). Eur J Entomol 95 : 643–647. [Google Scholar]
  26. Dolmatova AV, 1965. Med Parazitol (Mosk) 34 : 297–302. [Google Scholar]
  27. Lerner EA, Ribeiro JM, Nelson RJ, Lerner MR, 1991. Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. J Biol Chem 266 : 11234–11236. [Google Scholar]
  28. Ribeiro JM, 1995. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis 4 : 143–152. [Google Scholar]
  29. Charlab R, Rowton ED, Ribeiro JM, 2000. The salivary adenosine deaminase from the sand fly Lutzomyia longipalpis. Exp Parasitol 95 : 45–53. [Google Scholar]
  30. Mustard JF, Packham MA, 1977. Normal and abnormal haemostasis. Br Med Bull 33 : 137–191. [Google Scholar]
  31. Camp RDR, 1982. Prostaglandins, hydroxyfatty acids, leukoterienes and inflammation of the skin. Clin Exp Dermatol 7 : 435–444. [Google Scholar]
  32. Moncada S, Vane JR, 1978. Unstable metabolites of arachidonic acid and their role in haemostasis and thrombosis. Br Med Bull 34 : 129–135. [Google Scholar]
  33. Jackson TS, Lerner E, Weisbrod RM, Tajima M, Loscalzo J, Keaney JF, 1996. Vasodilatory properties of recombinant maxadilan. Am J Physiol 271 : H924–H930. [Google Scholar]
  34. Ribeiro JMC, 2000. Blood-feeding in mosquitoes: probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex). Med Vet Entomol 14 : 142–148. [Google Scholar]
  35. Lewis DJ, 1975. Functional morphology of the mouth parts in New World phlebotomine sandflies (Diptera: Psychodidae). Trans R Entomol Soc Lond 126 : 497–532. [Google Scholar]
  36. Shortt H, Swaminath C, 1928. The method of feeding of Phlebotomus argentipes with relation to its bearing on the transmission of kala azar. Indian J Med Res 15 : 827–836. [Google Scholar]
  37. Daniel TL, Kingsolver JG, 1983. Feeding strategy and the mechanics of blood sucking in insects. J Theor Biol 105 : 661–672. [Google Scholar]
  38. Hudson A, Bowman L, Orr CWM, 1960. Effects of absence of saliva on blood feeding by mosquitoes. Science 131 : 1730. [Google Scholar]
  39. Ribeiro J, 1988. How mosquitoes find blood. Misc Publ Entomol Soc Am 68 : 18–24. [Google Scholar]
  40. Walker ED, Edman JD, 1986. Influence of defensive bahavior of eastern chipmunks and gray squirrels (Rodentia: Sciuridae) on feeding success of Aedes trideriatus (Diptera: Culicidae). J Med Entomol 23 : 1–10. [Google Scholar]
  41. Edman JD, Kale HW, 1971. Host behavior: its influence on the feeding success of mosquitoes. Ann Entomol Soc Am 64 : 513–516. [Google Scholar]
  42. Edman JD, Webber LA, Kale HW, 1972. Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am J Trop Med Hyg 21 : 487–491. [Google Scholar]
  43. Waago JK, Nondo J, 1982. Host behaviour and mosquito feeding success: an experimental study. Trans R Soc Trop Med Hyg 76 : 119–122. [Google Scholar]
  44. Day JF, Edman JD, 1984. Mosquito engorgement on normally defensive hosts depends on host activity patterns. J Med Entomol 21 : 732–740. [Google Scholar]
  45. Gillett JD, 1967. Natural selection and feeding speed in a blood sucking insect. Proc R Soc Lond B Biol Sci 167 : 316–329. [Google Scholar]
  46. Walker ED, Edman JD, 1985. The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence. J Med Entomol 22 : 370–372. [Google Scholar]
  47. Carneiro VL, Fonseca LL, Andrade Filho JD, Lima MLN, Falcao AL, Brazil RP, 1993. Blood feeding activity of partially and totally engorged Lutzomyia longipalpis (Diptera: Psychodidae). Mem Inst Oswaldo Cruz 88 : 269. [Google Scholar]
  48. Kelly DW, Mustafa Z, Dye C, 1996. Density-dependent feeding success in a field population of the sandfly, Lutzomyia longipalpis. J Animal Ecol 65 : 517–527. [Google Scholar]

Data & Media loading...

  • Received : 17 Feb 2003
  • Accepted : 03 Sep 2003

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error