1921
Volume 69, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Treatment failures to the first- and second-lines antimalarial drugs chloroquine and sulfadoxine-pyrimethamine have increased in the Purworejo district on the island of Java, Indonesia. A molecular epidemiologic study was conducted to determine the frequency distribution of mutant alleles of the genes associated with the resistance among the isolates of from the area. Analyses using a polymerase chain reaction and restriction fragment length polymorphism showed that nearly all of the 111 samples carried mutant alleles in genes associated with chloroquine resistance: multi-drug resistance 1 (pfmdr1) 86Y (92%), 1042D (4.5%), and chloroquine resistance transporter (pfcrt) 76T (99.1%). Mutant alleles of the in the dihydrofolate reductase (dhfr) gene were also high (84.7%), either as 108N and 108T or paired with 59R, and 16V, respectively. Mutant alleles in the dihydropteroate synthase gene were the least common, either as a single 437G mutation (35.3%) or paired with 540E (26.5%). These results are consistent with the antimalarial drug resistance situation in the area and emphasize the need for a proper treatment strategy.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2003.69.614
2003-12-01
2017-11-23
Loading full text...

Full text loading...

/deliver/fulltext/14761645/69/6/0690614.html?itemId=/content/journals/10.4269/ajtmh.2003.69.614&mimeType=html&fmt=ahah

References

  1. Baird JK, Sismadi P, Masbar S, Ramzan A, Purnomo BW, Sekartuti, Tjitra BW, Rumoko BW, Arbani PR, 1995. A focus of hyperendemic malaria in Central Java. Am J Trop Med Hyg 54 : 98–104.
  2. Ebisawa I, Fukuyama T, 1975. Chloroquine-resistant falciparum malaria from West Irian and East Kalimantan. Ann Trop Med Parasitol 69 : 131–132.
  3. Ebisawa I, Fukuyama T, 1975. Chloroquine resistance of Plasmodium falciparum in West Irian and East Kalimantan. Ann Trop Med Parasitol 69 : 275–282.
  4. Clyde DF, McCarthy VC, Miller RM, Hornick RB, 1976. Chloroquine-resistant falciparum malaria from Irian Jaya (Indonesian New Guinea). J Trop Med Hyg 79 : 38–41.
  5. Fryauff DJ, Sumawinata I, Purnomo, Richie TL, Tjitra E, Bangs MJ, Kadir A, Ingkokusumo G, 1999. In vivo responses to antimalarials by Plasmodium falciparum and Plasmodium vivax from isolated Gag Island of northwest Irian Jaya, Indonesia. Am J Trop Med Hyg 60 : 542–546.
  6. Smrkovski LL, Hoffman SL, Purnomo, Hussein RP, Masbar S, Kurniawan L, 1983. Chloroquine resistant Plasmodium falciparum on the Island of Flores, Indonesia. Trans R Soc Trop Med Hyg 77 : 459–462.
  7. Verdrager J, Arwati S, 1974. Resistant Plasmodium falciparum infection from Samarinda. Kalimantan. Buletin Penelitian Kesehatan 2 : 43–50.
  8. Baird JK, Wiady I, Fryauff DJ, Sutanihardja MA, Leksana B, Widjaya H, Kysdarmanto, Subianto B, 1997. In vivo resistance to chloroquine by Plasmodium vivax and Plasmodium falciparum at Nabire, Irian Jaya, Indonesia. Am J Trop Med Hyg 56 : 627–631.
  9. Tjitra E, Gunawan S, Laihad F, Marwoto H, Sulaksono S, Arjoso S, Richie TL, Manurung N, 1997. Evaluation of antimalarial drugs in Indonesia 1981–1995. Buletin Penelitian Kesehatan 25 : 27–58.
  10. Wellems TE, Plowe CV, 2001. Chloroquine-resistant malaria. J Infect Dis 184 : 770–776.
  11. Cowman AF, 1998. The molecular basis of resistance to the sulfone, sulfonamides, and dihydrofolate reductase inhibitors. Sherman IW, ed. Malaria Parasite Biology, Pathogenesis and Protection. Washington, DC: American Society for Microbiology Press, 317–330.
  12. Basco LK, Ringwald P, 1997. pfmdr1 gene mutation and clinical response to chloroquine in Yaounde, Cameroon. Trans R Soc Trop Med Hyg 91 : 210–211.
  13. Curtis J, Duraisingh MT, Warhurst DC, 1998. In vivo selection for a specific genotype of dihydropteroate synthase of Plasmodium falciparum by pyrimethamine-sulfadoxine but not chlorproguanil-dapsone treatment. J Infect Dis 177 : 1429–1433.
  14. Gomez-Saladin E, Fryauff DJ, Taylor WR, Laksana BS, Susanti AI, Purnomo, Subianto B, Richie TL, 1999. Plasmodium falciparum mdr1 mutations and in vivo chloroquine resistance in Indonesia. Am J Trop Med Hyg 61 : 240–244.
  15. Jelinek T, Kilian AH, Kabagambe G, von Sonnenburg F, 1999. Plasmodium falciparum resistance to sulfadoxine/pyrimethamine in Uganda: correlation with polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes. Am J Trop Med Hyg 61 : 463–466.
  16. Basco LK, Tahar R, Ringwald P, 1998. Molecular basis of in vivo resistance to sulfadoxine-pyrimethamine in African adult patients infected with Plasmodium falciparum malaria parasites. Antimicrob Agents Chemother 42 : 1811–1814.
  17. Nzila AM, Mberu EK, Sulo J, Dayo H, Winstanley PA, Sibley CH, Watkins WM, 2000. Towards an understanding of the mechanism of pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: genotyping of dihydrofolate reductase and dihydropteroate synthase of Kenyan parasites. Antimicrob Agents Chemother 44 : 991–996.
  18. Bwijo B, Kaneko A, Takechi M, Zungu IL, Moriyama Y, Lum JK, Tsukahara T, Mita T, Takahashi N, Bergqvist Y, Bjorkman A, Kobayakawa T, 2003. High prevalence of quintuple mutant dhps/dhfr genes in Plasmodium falciparum infections seven years after introduction of sulfadoxine and pyrimethamine as first line treatment in Malawi. Acta Trop 85 : 363–373.
  19. Wang P, Read M, Sims PF, Hyde JE, 1997. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol Microbiol 23 : 979–986.
  20. Nagesha HS, Syafruddin D, Casey GJ, Susanti AI, Fryhauff DJ, Reeder JC, Cowman AF, 2001. Mutations in the pfmdr1, dhfr and dhps genes of Plasmodium falciparum are associated with in vivo drug resistance in Irian Jaya, Indonesia. Trans R Soc Trop Med Hyg 95 : 43–49.
  21. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov, Ferdig MT, Ursas LMB, Sidhu AS, Naude B, Deltsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein pfCRT and evidence for their role in chloroquine resistance. Mol Cell 5 : 861–871.
  22. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Dioutte Y, Doumbo S, Dicko A, Su XZ, Nomura T, Fidock DA Wellems T, Plowe CV, Coulibaly D, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344 : 257–263.
  23. Wooden J, Kyes S, Sibley CH, 1993. PCR and strain identification in Plasmodium falciparum. Parasitol Today 9 : 303–305.
  24. Duraisingh MT, Drakeley CJ, Muller O, Bailey R, Snounou G, Targett GA, Greenwood BM, Warhurst DC, 1997. Evidence for selection for the tyrosine-86 allele of the pfmdr 1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology 114 : 205–211.
  25. Duraisingh MT, Curtis J, Warhurst DC, 1998. Plasmodium falciparum: detection of polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes by PCR and restriction digestion. Exp Parasitol 89 : 1–8.
  26. Fryauff DJ, Baird JK, Candradikusuma D, Masbar S, Sutamiharja MA, Leksana B, Sekartuti, Marwoto H, Richie T, Romzan A, 1997. Survey of in vivo sensitivity to chloroquine by Plasmodium falciparum and P. vivax in Lombok, Indonesia. Am J Trop Med Hyg 56 : 241–244.
  27. Babiker HA, Pringle SJ, Abdel-Muchsin A, Mackinnon M, Hunt P, Walliker D, 2001. High- level chloroquine resistance in Sudanese isolates of P. falciparum is associated with mutations in the chloroquine resistance transporter gene, pfcrt and the multidrug resistance gene pfmdr1. J Infect Dis 183 : 1535–1538.
  28. Adagu IS, Warhurst DC, 2001. Plasmodium falciparum linkage disequilibrium between loci in chromosome 7 and 5 and chloroquine selective pressure in Northern Nigeria. Parasitology 123 : 219–224.
  29. Reed MB, Saliba KS, Caruana SR, Kirk K, Cowman AF, 2000. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403 : 906–909.
  30. Peterson DS, Walliker D, Wellems TE, 1988. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci USA 85 : 9114–9118.
  31. Cowman AF, Morry MJ, Biggs BA, Cross GAM, Foote SJ, 1988. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci USA 85 : 9109–9113.
  32. Foote Sj, Galatis D, Cowman AF, 1990. Amino acids in the dihydrofolate reductase-thymidilate synthase gene of Plasmodium falciparum involved in the cycloguanil resistance differ from those involved in pyrimethamine resistance. Proc Natl Acad Sci USA 87 : 3014–3017.
  33. Peterson DS, Milhous WK, Wellems TE, 1990. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc Natl Acad Sci USA 87 : 3018–3022.
  34. Sirawaraporn W, Sachikul T, Sirawaraporn R, Yuthavong Y, Santi DV, 1997. Antifolate resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc Natl Acad Sci USA 94 : 1124–1129.
  35. Sibley CH, Hyde JE, Sims PFG, Plowe CV, Kublin JG, Mberu EK, Cowman AF, Winstanley PA, Watkins WM, Nzila AM, 2001. Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 12 : 582–588.
  36. Triglia T, Menting JGT, Wilson C, Cowman AF, 1997. Mutations of dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 94 : 13944–13949.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2003.69.614
Loading
/content/journals/10.4269/ajtmh.2003.69.614
Loading

Data & Media loading...

  • Received : 26 Mar 2003
  • Accepted : 13 Sep 2003

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error