1921
Volume 69, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Cerebral malaria (CM) is a major cause of death in severe malaria. We present quantitative electron microscopic findings of the neuropathologic features in a prospective clinicopathologic study of 65 patients who died of severe malaria in Thailand and Vietnam. Sequestration of parasitized red blood cells (PRBCs) in cerebral microvessels was significantly higher in the brains of patients with CM compared with those with non-cerebral malaria (NCM) in all parts of the brain (cerebrum, cerebellum, and medulla oblongata). There was a hierarchy of sequestration with more in the cerebrum and cerebellum than the brain stem. When cerebral sequestration was compared with the peripheral parasitemia pre mortem, there were 26.6 times more PRBCs in the brain microvasculature than in the peripheral blood. The sequestration index was significantly higher in CM patients (median = 50.7) than in NCM patients (median = 6.9) ( = 0.042). The degree of sequestration of -infected erythrocytes in cerebral microvessels is quantitatively associated with pre-mortem coma.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2003.69.345
2003-10-01
2018-12-17
Loading full text...

Full text loading...

/deliver/fulltext/14761645/69/4/0690345.html?itemId=/content/journals/10.4269/ajtmh.2003.69.345&mimeType=html&fmt=ahah

References

  1. Miller L, Good M, Milon G, 1994. Malaria pathogenesis. Science 264 : 1878–1883. [Google Scholar]
  2. Turner GDH, 1997. Cerebral malaria. Brain Pathol 7 : 569–582. [Google Scholar]
  3. Ho M, White NJ, 1999. Molecular mechanisms of cytoadherence in malaria. Am J Physiol 276 : C1231–C1242. [Google Scholar]
  4. World Health Organization, Division of Control of Tropical Diseases, 2000. Severe Falciparum Malaria. Trans R Soc Trop Med Hyg 94 (Suppl) : 1–69. [Google Scholar]
  5. White N, Ho M, 1992. The pathophysiology of malaria. Adv Parasitol 31 : 83–173. [Google Scholar]
  6. Marsh K, Foster D, Waruiru C, Mwangi I, Winstanley M, Marsh V, Newton C, Winstanley P, Warn P, Peshu N, Pasvol G, Snow R, 1995. Indicators of life-threatening malaria in African children. N Engl J Med 332 : 1399–1404. [Google Scholar]
  7. Newton CRJC, Taylor TE, Whitten RO, 1998. Pathophysiology of fatal falciparum malaria in African children. Am J Trop Med Hyg 58 : 673–683. [Google Scholar]
  8. Aikawa M, Iseki M, Barnwell J, Taylor D, Oo M, Howard R, 1990. The pathology of human cerebral malaria. Am J Trop Med Hyg 43 : 30–37. [Google Scholar]
  9. Pongponratn E, Riganti M, Punpoowong B, Aikawa M, 1991. Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study. Am J Trop Med Hyg 44 : 168–175. [Google Scholar]
  10. Riganti M, Pongponratn E, Tegoshi T, Looareesuwan S, Punpoowong B, Aikawa M, 1990. Human cerebral malaria in Thailand: a clinicopathological correlation. Immunol Lett 25 : 199–205. [Google Scholar]
  11. MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA, 1985. Human cerebral malaria: a quantitative ultra-structural analysis of parasitized erythrocyte sequestration. Am J Pathol 119 : 385–401. [Google Scholar]
  12. Silamut K, Phu NH, Whitty C, Turner GDH, Louwrier K, Mai NTH, Simpson JA, Hien TT, White NJ, 1999. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 155 : 395–410. [Google Scholar]
  13. Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, Gatter KC, Newbold CI, Pukritayakamee S, Nagachinta B, White NJ, Berendt AR, 1994. An immunohistochemical study of the pathology of fatal malaria: evidence for widespread endothelial activation and a potential role for ICAM-1 in cerebral sequestration. Am J Pathol 145 : 1057–1069. [Google Scholar]
  14. Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, Loc PP, Phu NH, Bethell D, Farrar J, Gatter K, White NJ, Turner GDH, 1999. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 25 : 331–340. [Google Scholar]
  15. Medana IM, Mai NT, Day NP, Hien TT, Bethell D, Phu NH, Farrar J, White NJ, Turner GD, 2001. Cellular stress and injury responses in the brains of adult Vietnamese patients with fatal Plasmodium falciparum malaria. Neuropathol Appl Neurobiol 27 : 421–433. [Google Scholar]
  16. Hien TT, Day NPJ, Phu NH, Mai NTH, Chau TTH, Loc PP, Sinh DX, Chuong LV, Vinh H, Waller D, Peto TEA, White NJ, 1996. A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N Engl J Med 335 : 76–83. [Google Scholar]
  17. World Health Organization, Division of Control of Tropical Diseases, 1990. Severe and Complicated Malaria. Trans R Soc Trop Med Hyg 84 : 1–65. [Google Scholar]
  18. Marchiafava E, Bignami A, 1894. On summer-autumnal malaria fever. Malaria and the parasites of malaria fevers. New Sydenham Soc 150 : 1–234. [Google Scholar]
  19. Ewing J, 1902. Contribution to the pathological anatomy of malaria fever. J Exp Med 6 : 119–180. [Google Scholar]
  20. Spitz S, 1946. Pathology of acute falciparum malaria. Mil Med 99 : 555–572. [Google Scholar]
  21. Clark H, Tomlinson W, 1949. The pathological anatomy of malaria. Boyd MF, ed. Malariology. Philadelphia: W. B. Saunders, 874–903.
  22. Thomas JD, 1971. Clinical and histopathological correlation of cerebral malaria. Trop Geogr Med 23 : 232–238. [Google Scholar]
  23. Looareesuwan S, Warrell DA, White NJ, Sutharasamai P, Chanthavanich P, Sundaravej K, Juel-Jensen BE, Bunnag D, Harinasuta T, 1983. Do patients with cerebral malaria have cerebral oedema? A computed topography study. Lancet 1 : 434–437. [Google Scholar]
  24. Looareesuwan S, Wilairatana P, Krishna S, Kendall B, Vanaphan S, Viravan C, White NJ, 1995. Magnetic resonance imaging of the brain in patients with cerebral malaria. Clin Infect Dis 21 : 300–309. [Google Scholar]
  25. Clark IA, Rockett KA, 1996. Nitric oxide and parasitic disease. Adv Parasitol 37 : 1–56. [Google Scholar]
  26. Maneerat Y, Viriyavejakul P, Punpoowong B, Jones M, Wilairatana P, Pongponratn E, Turner GDH, Udomsangpetch R, 2000. Inducible nitric oxide synthase expression is increased in the brain in fatal cerebral malaria. Histopathology 37 : 269–277. [Google Scholar]
  27. Adams S, Brown H, Turner G, 2002. Breaking down the blood-brain barrier: signaling a path to cerebral malaria? Trends Parasitol 18 : 360–366. [Google Scholar]
  28. el-Shoura SM, al-Amari OM, 1993. Falciparum malaria in naturally infected human patients: II. Ultrastructural alterations to erythrocytes infected with asexual forms. J Morphol 215 : 207–212. [Google Scholar]
  29. Nagatake T, Thuc HV, Tegoshi T, Rabbege J, Anh K, Aikawa M, 1992. Pathology of falciparum malaria in Vietnam. Am J Trop Med Hyg 47 : 259–264. [Google Scholar]
  30. Sein K, Maeno Y, Thuc H, Anh T, Aikawa M, 1993. Differential sequestration of parasitized erythrocytes in the cerebrum and cerebellum in human cerebral malaria. Am J Trop Med Hyg 48 : 504–511. [Google Scholar]
  31. Sein K, Brown AE, Maeno Y, Smith CD, Corcoran KD, Hansukjariya P, Webster HK, Aikawa M, 1993. Sequestration pattern of parasitized erythrocytes in cerebrum, mid-brain, and cerebellum of Plasmodium coatneyi-infected rhesus monkeys (Macaca mulata). Am J Trop Med Hyg 49 : 513–519. [Google Scholar]
  32. Polder TW, Eling WM, Curfs JH, Jerusalem CR, Wijers-Rouw M, 1992. Ultrastructural changes in the blood-brain barrier of mice infected with Plasmodium berghei. Acta Leiden 60 : 31–46. [Google Scholar]
  33. Maeno Y, Brown A, Smith C, Tegoshi T, Toyoshima T, Ockenhouse CF, Corcoran KD, Ngampochjana M, Kyle DE, Webster HK, Aikawa M, 1993. A nonhuman primate model for human cerebral malaria: effects of artesunate (qinghaosu derivative) on rhesus monkeys experimentally infected with Plasmodium coatneyi. Am J Trop Med Hyg 49 : 726–734. [Google Scholar]
  34. Robert C, Peyrol S, Pouvelle B, Gay-Andrieu F, Gysin J, 1996. Ultrastructural aspects of Plasmodium falciparum-infected erythrocyte adherence to endothelial cells of Saimiri brain microvasculature. Am J Trop Med Hyg 54 : 169–177. [Google Scholar]
  35. Lou J, Donati YRA, Juillard P, Giroud C, Vesin C, Mili N, Grau GE, 1997. Platelets play an important role in TNF-induced microvascular endothelial cell pathology. Am J Pathol 151 : 1397–1405. [Google Scholar]
  36. Urban BC, Ferguson DJP, Pain A, Willcox N, Phletanski M, Austyn JM, Roberts DJ, 1999. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400 : 73–77. [Google Scholar]
  37. Yu W, Yu MC, Young PA, 1974. Ultrastructural changes in the cerebrovascular endothelium induced by a diet high in linoleic acid and deficient in vitamin E. Exp Mol Pathol 21 : 289–299. [Google Scholar]
  38. Schmahl FW, Schlote W, Urbascher B, Betz E, Heuser D, Hecker H, 1982. Reactions of endothelial cells of cerebral vessels in endotoxic shock. Reichard SM, Adams HR, Reynolds DG, Wolfe RR, eds. Advances in Shock Research. Proceedings of the 5th Annual Conference on Shock. Smugglers Notch, VT: Alan R. Liss, Inc., 192–193.
  39. Oo MM, Than T, 1989. Pathogenesis of ring-haemorrhage in cerebral malaria. Ann Trop Med Parasitol 83 : 555–557. [Google Scholar]
  40. Oo MM, Aikawa M, Than T, Aye TM, Myint PT, Igarashi I, Schoene WC, 1987. Human cerebral malaria: a pathological study. J Neuropathol Exp Neurol 46 : 223–231. [Google Scholar]
  41. Boonpucknavig V, Boonpucknavig S, Udomsangpetch R, Nitiyanant P, 1990. An immunofluorescence study of cerebral malaria: a correlation with histopathology. Arch Pathol Lab Med 114 : 1028–1034. [Google Scholar]
  42. Patnaik JK, Das BS, Mishkra SK, Mohantny S, Satpathy SK, Mohantny D, 1994. Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. Am J Trop Med Hyg 51 : 642–647. [Google Scholar]
  43. Luse SA, Miller LH, 1971. Plasmodium falciparum malaria. Ultrastructure of parasitized erythrocytes in cardiac vessels. Am J Trop Med Hyg 20 : 655–660. [Google Scholar]
  44. Craig A, Scherf A, 2001. Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 115 : 129–143. [Google Scholar]
  45. Aikawa M, Nakamura K, Shiraishi S, Matsumoto Y, Arwati H, Torii M, Ito Y, Takeuchi T, Tandler B, 1996. Membrane knobs of unfixed Plasmodium falciparum infected erythrocytes: new finding as revealed by the atomic force microscopy and surface potential spectroscopy. Exp Parasitol 84 : 339–343. [Google Scholar]
  46. Aikawa M, 1997. Studies on falciparum malaria with atomic-force and surface-potential microscopes. Ann Trop Med Parasitol 91 : 689–692. [Google Scholar]
  47. Marchenko S, Sage S, 1993. Electrical properties of resting and acetylcholine-stimulated endothelium in intact aorta. J Physiol 462 : 735–751. [Google Scholar]
  48. David PH, Handunnetti SM, Leech JH, Gamage P, Mendis KN, 1988. Rosetting: a new cytoadherence property of malaria-infected erythrocytes. Am J Trop Med Hyg 38 : 289–297. [Google Scholar]
  49. Kaul DK, Roth EF, Nagel RL, Howard RJ, Handunnetti SM, 1991. Rosetting of Plasmodium falciparum infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood 78 : 812–819. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2003.69.345
Loading
/content/journals/10.4269/ajtmh.2003.69.345
Loading

Data & Media loading...

  • Received : 18 Feb 2003
  • Accepted : 30 May 2003

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error