Volume 69, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Giles is a major malaria vector in Africa, but little is known about the genetic structure of natural populations. In this study, microsatellite markers were used to investigate the genetic structure of populations from Kenya. Two populations from western Kenya 80 km apart and two from coastal Kenya 50 km apart were collected and examined for allelic variation at five trinucleotide microsatellite loci. We found Giles was the predominant species (>98%) in the group in these populations. The western Kenya populations exhibited higher genetic diversity than the coastal populations. No significant genetic structure for populations within the coastal or western Kenya regions was detected. However, population genetic differentiation between the two regions was high (F = 0.208, R = 0.158), approximately two-fold higher than populations from the same area. The results suggest that the minimum area associated with a deme of in western or coastal Kenya is larger than 50 km in diameter. The Great Rift Valley in east Africa, high-elevation mountains in western Kenya, and the vast arid area east to the Great Rift Valley may all play a role in restricting gene flow between coastal and western Kenya.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Sachs J, Malaney P, 2002. The economic and social burden of malaria. Nature 415 : 680–685. [Google Scholar]
  2. Gillies MT, de Meillon B, 1968. The Anophelinae of Africa South of the Sahara. Johannesburg, South Africa: The South African Institute for Medical Research.
  3. Fontenille D, Lochouarn L, Diagne N, Sokhna C, Lemasson JJ, Diatta M, Konate L, Faye F, Rogier C, Trape JF, 1997. High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 56 : 247–253. [Google Scholar]
  4. Mbogo CM, Kabiru EW, Glass GE, Forster D, Snow RW, Khamala CP, Ouma JH, Githure JI, Marsh K, Beier JC, 1999. Vector-related case-control study of severe malaria in Kilifi District, Kenya. Am J Trop Med Hyg 60 : 781–785. [Google Scholar]
  5. Minakawa N, Githure JI, Beier JC, Yan G, 2001. Anopheline mosquito survival strategies during the dry period in western Kenya. J Med Entomol 38 : 388–392. [Google Scholar]
  6. Mbogo CM, Mwagangi JM, Nzovu J, Gu W, Yan G, Gunter JT, Swalm C, Keating J, Regens JL, Shililu JI, Githure JI, Beier JC, 2003. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg 68 : 734–742. [Google Scholar]
  7. Collins FH, Besansky NJ, 1994. Vector biology and the control of malaria in Africa. Science 264: 1874–1875. [Google Scholar]
  8. Crampton JM, 1994. Molecular studies of insect vectors of malaria. Adv Parasitol 34 : 1–31. [Google Scholar]
  9. Lehmann T, Besansky NJ, Hawley WA, Fahey TG, Kamau L, Collins FH, 1997. Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Mol Ecol 6 : 243–253. [Google Scholar]
  10. Kamau L, Lehmann T, Hawley WA, Orago AS, Collins FH, 1998. Microgeographic genetic differentiation of Anopheles gambiae mosquitoes from Asembo Bay, western Kenya: a comparison with Kilifi in coastal Kenya. Am J Trop Med Hyg 58 : 64–69. [Google Scholar]
  11. Lehmann T, Hawley WA, Grebert H, Collins FH, 1998. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15 : 264–276. [Google Scholar]
  12. Kamau L, Mukabana WR, Hawley WA, Lehmann T, Irungu LW, Orago AA, Collins FH, 1999. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol Biol 8 : 287–297. [Google Scholar]
  13. Kamau L, Hunt R, Coetzee M, 2002. Analysis of the population structure of Anopheles funestus (Diptera: Culicidae) from western and coastal Kenya using paracentric chromosomal inversion frequencies. J Med Entomol 39 : 78–83. [Google Scholar]
  14. Gillies M, Coetzee M, 1987. A Supplement to the Anophelinae of Africa, South of the Dahara (Afrotropical Region). Johannesburg, South Africa: The South African Institute for Medical Research.
  15. Wilkes TJ, Matola YG, Charlwood JD, 1996. Anopheles rivulorum, a vector of human malaria in Africa. Med Vet Entomol 10 : 108–110. [Google Scholar]
  16. De Meillon B, van Eeden GJ, Coetzee L, Coetzee M, Meiswinkel R, du Toit CLN, Hansford CF, 1977. Observations on a species of the Anopheles funestus subgroup, a suspected exophilic vector of malaria parasites in northeastern Transvaal, South Africa. Mosq News 37 : 657–661. [Google Scholar]
  17. Lochouarn L, Dia I, Boccolini D, Coluzzi M, Fontenille D, 1998. Bionomical and cytogenetic heterogeneities of Anopheles funestus in Senegal. Trans R Soc Trop Med Hyg 92 : 607–612. [Google Scholar]
  18. Dia I, Lochouarn L, Boccolini D, Costantini C, Fontenille D, 2000. Spatial and temporal variations of the chromosomal inversion polymorphism of Anopheles funestus in Senegal. Parasite 7 : 179–184. [Google Scholar]
  19. Boccolini D, Sabatini A, Sanogo E, Sagnon N, Coluzzi M, Costantini C, 1994. Chromosomal and vectorial heterogeneities in Anopheles funestus from Burkina Faso, West Africa. Parassitologia 36 : 20. [Google Scholar]
  20. Costantini C, Sagnon NF, Ilboudo-Sanogo E, Coluzzi M, Boccolini D, 1999. Chromosomal and bionomic heterogeneities suggest incipient speciation in Anopheles funestus from Burkina Faso. Parassitologia 41 : 595–611. [Google Scholar]
  21. Mukabayire O, Boccolini D, Lochouarn L, Fontenille D, Besansky NJ, 1999. Mitochondrial and ribosomal internal transcribed spacer (ITS2) diversity of the African malaria vector Anopheles funestus. Mol Ecol 8 : 289–297. [Google Scholar]
  22. Lanzaro GC, Zheng L, Toure YT, Traore SF, Kafatos FC, Vernick KD, 1995. Microsatellite DNA and isozyme variability in a west African population of Anopheles gambiae. Insect Mol Biol 4 : 105–112. [Google Scholar]
  23. Lehmann T, Hawley WA, Collins FH, 1996. An evaluation of evolutionary constraints on microsatellite loci using null alleles. Genetics 144 : 1155–1163. [Google Scholar]
  24. Walton C, Thelwell NJ, Priestman A, Butlin RK, 1998. The use of microsatellites to study gene flow in natural populations of Anopheles malaria vectors in Africa: potential and pitfalls. J Am Mosq Control Assoc 14 : 266–272. [Google Scholar]
  25. Donnelly MJ, Cuamba N, Charlwood JD, Collins FH, Townson H, 1999. Population structure in the malaria vector, Anopheles arabiensis Patton, in east Africa. Heredity 83 : 408–417. [Google Scholar]
  26. Sinkins SP, Hackett BJ, Costantini C, Vulule J, Ling YY, Collins FH, Besansky NJ, 2000. Isolation of polymorphic microsatellite loci from the malaria vector Anopheles funestus. Mol Ecol 9 : 490–492. [Google Scholar]
  27. Sharakhov IV, Braginets O, Mbogo CM, Yan G, 2001. Isolation and characterization of trinucleotide microsatellites in African malaria mosquito Anopheles funestus. Mol Ecol Notes 1 : 289–292. [Google Scholar]
  28. Cohuet A, Simard F, Berthomieu A, Raymond M, Fontenille D, Weill M, 2002. Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles funestus. Mol Ecol Notes 2 : 498–500. [Google Scholar]
  29. Severson DW, 1997. RELP analysis of insect genomes. Crampton J, Beard CB, Louis C, eds. Molecular Biology of Insect Disease Vectors: A Methods Manual. New York: Chapman & Hall, 309–320.
  30. Koekemoer LL, Lochouarn L, Hunt RH, Coetzee M, 1999. Single-strand conformation polymorphism analysis for identification of four members of the Anopheles funestus (Diptera: Culicidae) group. J Med Entomol 36 : 125–130. [Google Scholar]
  31. Raymond M, Rousset F, 1995. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86 : 248–249. [Google Scholar]
  32. Weir B, 1990. Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sunderland, MA: Sinauer Associates, Inc.
  33. Yan G, Chadee DD, Severson DW, 1998. Evidence for genetic hitchhiking effect associated with insecticide resistance in Aedes aegypti. Genetics 148 : 793–800. [Google Scholar]
  34. Goudet J, 1995. FSTAT version 1.2: a computer program to calculate F-statistics. J Hered 86 : 485–486. [Google Scholar]
  35. Miller M, 1997. Tools for population genetic analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author.
  36. Slatkin M, 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139 : 457–462. [Google Scholar]
  37. Lehmann T, Hawley WA, Grebert H, Danga M, Atieli F, Collins FH, 1999. The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J Hered 90 : 613–621. [Google Scholar]
  38. Minakawa N, Sonye G, Mogi M, Githeko A, Yan G, 2002. The effect of climatic factors on the distribution and abundance of malaria vectors in Kenya. J Med Entomol 39 : 833–841. [Google Scholar]
  39. Lehmann T, Licht M, Elissa N, Maega BT, Chimumbwa JM, Watsenga FT, Wondji CS, Simard F, Hawley WA, 2003. Population Structure of Anopheles gambiae in Africa. J Hered 94 : 133–147. [Google Scholar]
  40. Balloux F, Brunner H, Lugon-Moulin N, Hausser J, Goudet J, 2000. Microsatellites can be misleading: an empirical and simulation study. Evolution 54 : 1414–1422. [Google Scholar]
  41. Estoup A, Tailliez C, Cornuet JM, Solignac M, 1995. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol Biol Evol 12 : 1074–1084. [Google Scholar]
  42. Wright S, 1943. Isolation by distance. Genetics 28 : 114–138. [Google Scholar]

Data & Media loading...

  • Received : 19 Feb 2003
  • Accepted : 07 Jul 2003

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error