1921
Volume 69, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

A polymerase chain reaction (PCR)–based diagnostic assay was developed that rapidly and reliably differentiates the sibling species of the complex, s.s. and . The assay makes use of nucleotide differences in the internal transcribed spacer 2 ribosomal DNA sequences to generate PCR products of specific length for each of the two species. In evaluating the test, 580 of 592 field-collected s.l. specimens were unambiguously identified as one of the two sibling species. Due to poor DNA quality, the remaining 12 specimens yielded no PCR product. Of the 592 mosquitoes, 407 larval specimens had been identified morphologically prior to species-specific DNA amplification, and in all instances PCR identification corroborated with morphologic identification. Mosquitoes identified as s.s. came from various localities all over Europe and from Israel. Those identified as were collected in southern France and Spain. The species-diagnostic PCR assay would facilitate data collection on the temporal and spatial distribution of the two sibling species because they represent possible vectors of disease in Europe, the Near and Middle East, and north Africa.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2003.69.195
2003-08-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/69/2/0690195.html?itemId=/content/journals/10.4269/ajtmh.2003.69.195&mimeType=html&fmt=ahah

References

  1. Del Vecchio G, 1939. Sulle varietà di Anopheles claviger. Riv Parassitol 3 : 27–37. [Google Scholar]
  2. Lupascu G, 1941. Sull’existanza di due varieta di Anopheles claviger. Riv Parassitol 5 : 25–44. [Google Scholar]
  3. Coluzzi M, 1962. Le forme di Anopheles claviger Meigen indicate con i nomi missiroli e petragnanii sono due specie reprodutti-vamento isolate. Rendiconti Acad Nazionale Lincei 32 : 1025–1030. [Google Scholar]
  4. Coluzzi M, Sacca G, Feliciangeli D, 1965. Il complesso A. claviger nella sottoregione mediterranea. Cah ORSTOM Ser Entomol Med Parasitol 3 : 97–102. [Google Scholar]
  5. Zamburlini R, Cargnus E, 1998. Il complesso Anopheles claviger (Diptera, Culicidae) nell’Italia nord-orientale. Parassitologia 40 : 347–351. [Google Scholar]
  6. Schaffner F, Angel G, Geoffroy B, Hervy JP, Rhaiem A, Brunhes J, 2001. The Mosquitoes of Europe/Les moustiques d’Europe. An Identification and Training Programme (CD-Rom), Montpellier, France: IRD Éditions & EID Méditerranée.
  7. Cianchi R, Sabatini A, Bullini L, Coluzzi M, 1980. Divergenza genetica tra due specie gemelle del genere Anopheles: An. claviger e An. petragnani (Diptera, Culicidae). Rome: Atti XII Congresso Nazionale Italia Entomologica, 261–263.
  8. Cianchi R, Sabatini A, Coluzzi M, Bullini L, 1981. Differenziazione morphologica e genetica nei complessi Anopheles maculipennis e Anopheles claviger. Parassitologia 23 : 158–163. [Google Scholar]
  9. Bullini L, 1984. Genetic differentiation and speciation in European and African malaria vectors. Mem Sci Fis Natl Ser V 8 : 57–69. [Google Scholar]
  10. Postiglione M, Tabanli S, Ramsdale CD, 1972. Anopheles claviger in Turkey. Riv Parassitol 33 : 219–230. [Google Scholar]
  11. Ramsdale C, Snow K, 2000. Distribution of the genus Anopheles in Europe. Eur Mosq Bull 7 : 1–26. [Google Scholar]
  12. Hargreaves E, 1923. Entomological notes from Taranto (Italy) with references to Faenza, during 1917 and 1918. Bull Entomol Res 14 : 213–219. [Google Scholar]
  13. MacDonald G, 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.
  14. Russell PF, West LS, Manwell RD, MacDonald G, 1963. Practical Malariology. London: Oxford University Press.
  15. Jetten TH, Takken W, 1994. Anophelism Without Malaria in Europe – A Review of the Ecology and Distribution of the Genus Anopheles in Europe. Wageningen, The Netherlands: Wageningen Agricultural University.
  16. Sutherst RW, 1993. Arthropods as disease vectors in a changing environment. Ciba Found Symp 175 : 124–145. [Google Scholar]
  17. Gratz NG, 1999. Emerging and resurging vector-borne diseases. Annu Rev Entomol 44 : 51–75. [Google Scholar]
  18. Snow K, 1999. Malaria and mosquitoes in Britain: the effect of global climate change. Eur Mosq Bull 4 : 17–25. [Google Scholar]
  19. Romi R, Sabatinelli G, Majori G, 2001. Could malaria reappear in Italy? Emerg Infect Dis 7 : 915–919. [Google Scholar]
  20. Kampen H, Maltezos E, Pagonaki M, Hunfeld KP, Maier WA, Seitz HM, 2002. Individual cases of autochthonous malaria in Evros Province, northern Greece: serological aspects. Parasitol Res 88 : 261–266. [Google Scholar]
  21. Kampen H, Proft J, Etti S, Maltezos E, Pagonaki M, Maier WA, Seitz HM, 2003. Individual cases of autochthonous malaria in Evros Province, northern Greece: entomological aspects. Parasitol Res 89 : 252–258. [Google Scholar]
  22. Aspöck H, 1996. Stechmücken als Virusüberträger in Mitteleuropa. Nova Acta Leopoldina NF71 : 37–55. [Google Scholar]
  23. Lundström JO, 1999. Mosquito-borne viruses in western Europe: a review. J Vector Ecol 24 : 1–39. [Google Scholar]
  24. Majori G, Sabatinelli G, Kondrachine V, 1999. Re-emerging malaria in the WHO European region: control priorities and constraints. Parassitologia 41 : 327–328. [Google Scholar]
  25. Bublikova LI, 1997. Evaluation of the epidemiological significance of populations of malarial mosquitoes (Culicidae: Anopheles) in the northern zone of the Tien-Shan region. Parazitologiia 31 : 486–491. [Google Scholar]
  26. Pchelkina AA, Seledtsov II, 1978. Experimental studies of the relationship between Tahyna virus and mosquitoes. Med Parazitol (Mosk) 47 : 59–63. [Google Scholar]
  27. Traavik T, Mehl R, Wiger R, 1985. Mosquito-borne arboviruses in Norway: further isolation and detection of antibodies to California encephalitis viruses in human, sheep, and wildlife sera. J Hyg (Camb) 94 : 111–122. [Google Scholar]
  28. Service MW, 1971. A reappraisal of the role of mosquitoes in the transmission of myxomatosis in Britain. J Hyg (Camb) 69 : 105–111. [Google Scholar]
  29. Adamovich VL, Strutinskii VM, 1974. The importance of adults of Aedes cinereus Meig. as mechanical carriers of tularaemia in forest-marsh landscapes. Probl Os Opasn Infekt 1 : 100–108. [Google Scholar]
  30. Artemenko LP, Ponomarenko VY, 1974. A study of the agent of anaplasmosis of cattle in mosquitoes. Veterinariya 37 : 88–90. [Google Scholar]
  31. Cancrini G, Pietrobelli M, Frangipane di Regalbono F, Tampieri MP, 1997. Mosquitoes as vectors of Setaria labiatopapillosa. Int J Parasitol 27 : 1061–1064. [Google Scholar]
  32. Peus F, 1942. Die Fiebermücken des Mittelmeergebietes. Leipzig: P. Schöps Verlag.
  33. Weyer F, 1942. Bestimmungsschlüssel für Anopheles-Weibchen und Larven in Europa, Nordafrika und Westasien. Hamburg: Merkbl. Institut Schiffs-U. Tropenkrankheiten Hamburg (Med. wichtige Insekten) V12.
  34. Mohrig W, 1969. Die Culiciden Deutschlands. Jena: Parasitol Schriftenreihe.
  35. Schaffner F, Raymond M, Pasteur N, 2000. Genetic differentiation of Anopheles claviger s.s. in France and neighbouring countries. Med Vet Entomol 14 : 264–271. [Google Scholar]
  36. Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V, 1987. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg 37 : 37–41. [Google Scholar]
  37. Proft J, Maier WA, Kampen H, 1999. Identification of six sibling species of the Anopheles maculipennis complex (Diptera: Culicidae) by a polymerase chain reaction assay. Parasitol Res 85 : 837–843. [Google Scholar]
  38. Guy EC, Stanek G, 1991. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J Clin Pathol 44 : 610–611. [Google Scholar]
  39. Beckingham K, 1982. Insect rDNA. Cell Nucl 10 : 205–269. [Google Scholar]
  40. Collins FH, Paskewitz SM, 1996. A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol 5 : 1–9. [Google Scholar]
  41. Porter CH, Collins FH, 1991. Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). Am J Trop Med Hyg 45 : 271–279. [Google Scholar]
  42. Wesson DM, Porter CH, Collins FH, 1992. Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera: Culicidae). Mol Phylogenet Evol 1 : 253–269. [Google Scholar]
  43. Cornel AJ, Porter CH, Collins FH, 1996. Polymerase chain reaction species diagnostic assay for Anopheles quadrimaculatus cryptic species (Diptera: Culicidae) based on ribosomal DNA ITS2 sequences. J Med Entomol 33 : 109–116. [Google Scholar]
  44. Beebe NW, Cooper RD, 2000. Systematics of malaria vectors with particular reference to the Anopheles punctulatus group. Int J Parasitol 30 : 1–17. [Google Scholar]
  45. Jaenson TGT, Lokki J, Saura A, 1986. Anopheles (Diptera: Culicidae) and malaria in northern Europe, with special reference to Sweden. J Med Entomol 23 : 68–75. [Google Scholar]
  46. Korvenkontio P, Lokki J, Saura A, Ulmanen I, 1979. Anopheles maculipennis complex (Diptera: Culicidae) in northern Europe: species diagnosis by egg structure and enzyme polymorphism. J Med Entomol 16 : 169–170. [Google Scholar]
  47. Stegnii VN, Kabanova VM, 1978. Cytoecological study of indigenous populations of the malaria mosquito in the territory of the U.S.S.R.: I. Identification of a new species of Anopheles in the maculipennis complex by the cytodiagnostic method. Mosq Syst 10 : 1–12. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2003.69.195
Loading
/content/journals/10.4269/ajtmh.2003.69.195
Loading

Data & Media loading...

  • Received : 30 Sep 2002
  • Accepted : 03 Apr 2003

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error