Volume 68, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Using two polymorphic genetic markers, the merozoite surface protein-3α (MSP-3α) and the circumsporozoite protein (CSP), we investigated the population diversity of in Mae Sod, Thailand from April 2000 through June 2001. Genotyping the parasites isolated from 90 malaria patients attending two local clinics for the dimorphic gene revealed that the majority of the parasites (77%) were the VK210 type. Genotyping the -α gene indicated that populations exhibited an equally high level of polymorphism as those from Papua New Guinea, a hyperendemic region. Based on the length of polymerase chain reaction products, three major types of the α locus were distinguished, with frequencies of 74.8%, 18.7%, and 6.5%, respectively. The 13 alleles distinguished by restriction fragment length polymorphism analysis did not show a significant seasonal variation in frequency. Genotyping the α and genes showed that 19.3% and 25.6% of the patients had multiple infections, respectively, and the combined rate was 35.6%. Comparisons of MSP-3α sequences from nine clones further confirmed the high level of genetic diversity of the parasite and also suggested that geographic isolation may exist. These results strongly indicate that populations are highly diverse and multiple clonal infections are common in this malaria-hypoendemic region of Thailand.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 (Suppl) : 97–106. [Google Scholar]
  2. Babiker HA, Walliker D, 1997. Current views on the population structure of Plasmodium falciparum: implications for control. Parasitol Today 13 : 262–267. [Google Scholar]
  3. Awadalla P, Walliker D, Babiker H, Mackinnon M, 2001. The question of Plasmodium falciparum population structure. Trends Parasitol 17 : 351–353. [Google Scholar]
  4. Kirchgatter K, del Portillo HA, 1998. Molecular analysis of Plasmodium vivax relapses using the MSP1 molecule as a genetic marker. J Infect Dis 177 : 511–515. [Google Scholar]
  5. Rosenberg R, Wirtz RA, Lanar DE, Sattabongkot J, Hall T, Waters AP, Prasittisuk C, 1989. Circumsporozoite protein heterogeneity in the human malaria parasite Plasmodium vivax. Science 245 : 973–976. [Google Scholar]
  6. Qari SH, Goldman IF, Povoa MM, Oliveira S, Alpers MP, Lal AA, 1991. Wide distribution of the variant form of the human malaria parasite Plasmodium vivax. J Biol Chem 266 : 16297–16300. [Google Scholar]
  7. Qari SH, Goldman IF, Povoa MM, di Santi S, Alpers MP, Lal AA, 1992. Polymorphism in the circumsporozoite protein of the human malaria parasite Plasmodium vivax. Mol Biochem Parasitol 55 : 105–114. [Google Scholar]
  8. Qari SH, Collins WE, Lobel HO, Tylor F, Lal AA, 1994. A study of polymorphism in the circumsporozoite protein of the human malaria parasites. Am J Trop Med Hyg 50 : 45–51. [Google Scholar]
  9. Wirtz RA, Rosenberg R, Sattabongkot J, Webster HK, 1990. Prevalence of antibody to heterologous circumsporozoite protein of Plasmodium vivax in Thailand. Lancet 336 : 593–595. [Google Scholar]
  10. Del Portillo HA, Longacre S, Khouri E, David PH, 1991. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc Natl Acad Sci USA 88 : 4030–4034. [Google Scholar]
  11. Premawansa S, Snewin VA, Khouri E, Mendis KN, David PH, 1993. Plasmodium vivax: recombination between potential allelic types of the merozoite surface protein MSP1 in parasites isolated from patients. Exp Parasitol 76 : 192–199. [Google Scholar]
  12. Cheng Q, Stowers A, Huang TY, Bustos D, Huang YM, Rzepczyk C, Saul A, 1993. Polymorphism in Plasmodium vivax MSA1 gene – the result of intragenic recombinations? Parasitology 106 : 335–345. [Google Scholar]
  13. Mancilla LI, Levitus G, Kirchgatter K, Mertens F, Herrera S, del Portillo HA, 1994. Plasmodium vivax: dimorphic DNA sequences from the MSP-1 gene code for regions that are immunogenic in natural infections. Exp Parasitol 79 : 148–158. [Google Scholar]
  14. Kolakovich K, Ssengoba A, Wojcik K, Tsuboi T, Al-Yaman F, Alpers M, Adams JH, 1996. Plasmodium vivax: favored gene frequencies of the merozoite surface protein-1 and the multiplicity of infection in a malaria endemic region. Exp Parasitol 83 : 11–18. [Google Scholar]
  15. Putaporntip C, Jongwutiwes S, Tanabe K, Thaithong S, 1997. Interallelic recombination in the merozoite surface protein 1 (MSP1) gene of Plasmodium vivax from Thai isolates. Mol Biochem Parasitol 84 : 49–56. [Google Scholar]
  16. Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day K, 1999. Polymorphism at the merozoite surface protein-3a locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg 61 : 518–525. [Google Scholar]
  17. Bruce MC, Galinski MR, Barnwell JW, Donnelly CA, Walmsley M, Alpers MP, Walliker D, Day K, 2000. Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology 121 : 257–272. [Google Scholar]
  18. Galinski MR, Corredor-Medina C, Povoa M, Crosby J, Ingravallo P, Barnwell JW, 1999. Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain. Mol Biochem Parasitol 101 : 131–147. [Google Scholar]
  19. Plowe C, Djimde A, Bouare M, Doumbo O, Wellems TE, 1995. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg 52 : 565–568. [Google Scholar]
  20. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario WE, Thaithong S, Brown KN, 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61 : 315–320. [Google Scholar]
  21. Kain KC, Keystone J, Franke ED, Lanar DE, 1991. Global distribution of a variant of the circumsporozoite gene of Plasmodium vivax. J Infect Dis 164 : 208–210. [Google Scholar]
  22. Sokal RR, Rohlf FJ, 1981. Biometry. Second edition. San Francisco, W.H. Freeman and Company.
  23. Suwanabun N, Sattabongkot J, Wirtz RA, Rosenberg R, 1994. The epidemiology of Plasmodium vivax circumsporozoite protein polymorphs in Thailand. Am J Trop Med Hyg 50 : 460–464. [Google Scholar]
  24. Burkot TR, Wirtz RA, Paru R, Garner P, Alpers MP, 1992. The population dynamics in mosquitoes and humans of two Plasmodium vivax polymorphs distinguished by different circumsporozoite protein repeat regions. Am J Trop Med Hyg 47 : 778–786. [Google Scholar]
  25. Kain KC, Brown AE, Webster HK, Wirtz RA, Keystone JS, Rodriguez MH, Kinahan J, Rowland M, Lanar DE, 1992. Circumsporozoite genotyping of global isolates of Plasmodium vivax from dried blood specimens. J Clin Microbiol 30 : 1863–1866. [Google Scholar]
  26. Gonzalez JM, Hurtado S, Arevalo-Herrera M, Herrera S, 2001. Variants of the Plasmodium vivax circumsporozoite protein (VK210 and VK247) in Colombian isolates. Mem Inst Oswaldo Cruz 96 : 709–712. [Google Scholar]
  27. Gonzalez-Ceron L, Rodriguez MH, Nettel JC, Villarreal C, Kain KC, Hernandez JE, 1999. Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico. Infect Immun 67 : 410–412. [Google Scholar]
  28. Rodriguez MH, Gonzalez-Ceron L, Hernandez JE, Nettel JA, Villarreal C, Kain KC, Wirtz RA, 2000. Different prevalence of Plasmodium vivax phenotypes CK210 and VK247 associated with the distribution of Anopheles albimanus and Anopheles pseudopunctipennis in Mexico. Am J Trop Med Hyg 62 : 122–127. [Google Scholar]
  29. Babiker HA, Lines J, Hill WG, Walliker D, 1997. Population structure of Plasmodium falciparum in villages with different malaria endemicity in east Africa. Am J Trop Med Hyg 56 : 141–147. [Google Scholar]
  30. Anderson TJC, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bocharie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day K, 2000. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17 : 1467–1482. [Google Scholar]
  31. Paul REL, Hackford I, Brockman A, Muller-Graf C, Price R, Luxemburger C, White NJ, Nosten F, Day KP, 1998. Transmission intensity and Plasmodium falciparum diversity on the northwestern border of Thailand. Am J Trop Med Hyg 58 : 195–203. [Google Scholar]
  32. Tanner M, Beck H-P, Felger I, Smith T, 1999. The epidemiology of multiple Plasmodium falciparum infections. 1. General introduction. Trans R Soc Trop Med Hyg 93 (Suppl) : 1–2. [Google Scholar]
  33. Joshi H, Subbarao SK, Adak T, Nanda N, Ghosh SK, Carter R, Sharma VP, 1997. Genetic structure of Plasmodium vivax isolates in India. Trans R Soc Trop Med Hyg 91 : 231–235. [Google Scholar]
  34. Machado RLD, Povoa MM, 2000. Distribution of Plasmodium vivax variants (VK210, VK247, and P. vivax-like) in three endemic areas of the Amazon region of Brazil and their correlation with chloroquine treatment. Trans R Soc Trop Med Hyg 94 : 377–381. [Google Scholar]
  35. Udagama PV, Gamage-Mendis AC, Havid PH, Peiris JSM, Perera KLRL, Mendis KN, Carter R, 1990. Genetic complexity of Plasmodium vivax parasites in individual human infections analyzed with monoclonal antibodies against variant epitopes on a single parasite protein. Am J Trop Med Hyg 42 : 104–110. [Google Scholar]

Data & Media loading...

  • Received : 21 Nov 2002
  • Accepted : 09 Jan 2003

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error