1921
Volume 103, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

COVID-19 manifestations in symptomatic patients can be in the form of pneumonia, acute respiratory syndrome, and multiple organ dysfunction as well. Renal complications, gastrointestinal dysfunctions, endocrine system disorders, myocardial dysfunction and arrhythmia, neurological dysfunctions, dermatological symptoms, hematological manifestations, and thromboinflammation are among the reported extrapulmonary complications. Moreover, the presence of coagulopathy, excessive and dysregulated immune responses, and autoimmunity by COVID-19 patients is considerable. The pathogenesis of infection entails the entry of the virus via receptors on cells, principally angiotensin-converting enzyme 2 receptors. Direct virus damage coupled with indirect effects of viral infection including thromboinflammation, dysfunction of the immune system, and dysregulation of the renin–angiotensin system leads to multiple organ failure. This review outlines the extrapulmonary organ–specific complications and their pathophysiology and epidemiology.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.20-0986
2020-09-15
2020-11-28
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/5/tpmd200986.html?itemId=/content/journals/10.4269/ajtmh.20-0986&mimeType=html&fmt=ahah

References

  1. Wang K et al., 2020. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv 2020: 14.988345. Available at: https://doi.org/10.1101/2020.03.14.98834.
    [Google Scholar]
  2. Gupta A et al., 2020. Extrapulmonary manifestations of COVID-19. Nat Med 26: 10171032.
    [Google Scholar]
  3. Wan S et al., 2020. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID‐19) infected patients. Br J Haematol 189: 428437.
    [Google Scholar]
  4. Hemmat N, Derakhshani A, Bannazadeh Baghi H, Silvestris N, Baradaran B, De Summa S, 2020. Neutrophils, crucial, or harmful immune cells involved in coronavirus infection: a bioinformatics study. Front Genet 11: 641.
    [Google Scholar]
  5. Sun SC, Chang JH, Jin J, 2013. Regulation of nuclear factor-κB in autoimmunity. Trends Immunol 34: 282289.
    [Google Scholar]
  6. Varga Z et al., 2020. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395: 14171418.
    [Google Scholar]
  7. Guo T et al., 2020. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 5: 811818.
    [Google Scholar]
  8. Zheng Y, Ma YT, Zhang JY, Xie X, 2020. COVID-19 and the cardiovascular system. Nat Rev Cardiol 17: 259260.
    [Google Scholar]
  9. Kang Y, Chen T, Mui D, Ferrari V, Jagasia D, Scherrer-Crosbie M, Chen Y, Han Y, 2020. Cardiovascular manifestations and treatment considerations in COVID-19. Heart 106: 11321141.
    [Google Scholar]
  10. Huang C et al., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497506.
    [Google Scholar]
  11. Gao L et al., 2020. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res 21: 83.
    [Google Scholar]
  12. Zou X, Chen K, Zou J, Han P, Hao J, Han Z, 2020. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 14: 185192.
    [Google Scholar]
  13. Sharma A, Garcia G, Arumugaswami V, Svendsen CN, 2020. Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 infection. bioRxiv (the preprint server for biology). Available at: https://doi.org/10.1101/2020.04.21.051912.
    [Google Scholar]
  14. Yancy CW, Fonarow GC, 2020. Coronavirus disease 2019 (COVID-19) and the heart—is heart failure the next chapter? JAMA Cardiol (Epub ahead of print). Available at: https://doi.org/10.1001/jamacardio.2020.3575.
    [Google Scholar]
  15. Cavezzi A, Troiani E, Corrao S, 2020. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract 10: 1271.
    [Google Scholar]
  16. Sattar Y et al., 2020. COVID-19 cardiovascular epidemiology, cellular pathogenesis, clinical manifestations and management. Int J Cardiol Heart Vasc 29: 100589.
    [Google Scholar]
  17. Wang D et al., 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 323: 10611069.
    [Google Scholar]
  18. Wang Z, Xu X, 2020. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells 9: 920.
    [Google Scholar]
  19. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC, 2020. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 17: 543558.
    [Google Scholar]
  20. Tal S, Spectre G, Kornowski R, Perl L, 2020. Venous thromboembolism complicated with COVID-19: what do we know so far? Acta Haematol 12: 18.
    [Google Scholar]
  21. Porfidia A, Pola R, 2020. Venous thromboembolism and heparin use in COVID-19 patients: juggling between pragmatic choices, suggestions of medical societies and the lack of guidelines. J Thromb Thrombolysis 50: 6871.
    [Google Scholar]
  22. Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, Bonanomi E, D’Antiga L, 2020. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 395: 17711778.
    [Google Scholar]
  23. Jones VG, Mills M, Suarez D, Hogan CA, Yeh D, Segal JB, Nguyen EL, Barsh GR, Maskatia S, Mathew R, 2020. COVID-19 and Kawasaki disease: novel virus and novel case. Hosp Pediatr 10: 537540.
    [Google Scholar]
  24. Ehrenfeld M et al., 2020. COVID-19 and autoimmunity. Autoimmun Rev 19: 102597.
    [Google Scholar]
  25. Han H, Yang L, Liu R, Liu F, Wu KL, Li J, Liu XH, Zhu CL, 2020. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 25: 11161120.
    [Google Scholar]
  26. Lippi G, Plebani M, Henry BM, 2020. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 506: 145148.
    [Google Scholar]
  27. Huang I, Pranata R, 2020. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis. J Intensive Care 8: 36.
    [Google Scholar]
  28. Violetis OA, Chasouraki AM, Giannou AM, Baraboutis IG, 2020. COVID-19 infection and haematological involvement: a review of epidemiology, pathophysiology and prognosis of full blood count findings. SN Compr Clin Med 15 (Epub ahead of print). Available at: https://doi.org/10.1007/s42399-020-00380-3.
    [Google Scholar]
  29. Terpos E, Ntanasis-Stathopoulos N, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA, 2020. Hematological findings and complications of COVID‐19. Am J Hematol 95: 834847.
    [Google Scholar]
  30. Xu P, Zhou Q, Xu J, 2020. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol 99: 12051208.
    [Google Scholar]
  31. Lillicrap D, 2020. Disseminated intravascular coagulation in patients with 2019‐nCoV pneumonia. J Thromb Haemost 18: 786787.
    [Google Scholar]
  32. Wan Y et al., 2020. Enteric involvement in hospitalised patients with COVID-19 outside Wuhan. Lancet Gastroenterol Hepatol 5: 534535.
    [Google Scholar]
  33. Fang D, Jingdong MA, Guan J, Wang M, Song J, Tian D, Peiyuan LI, 2020. Manifestations of digestive system in hospitalized patients with novel coronavirus pneumonia in Wuhan, China: a single-center, descriptive study. Chin J Dig 40: E005.
    [Google Scholar]
  34. Tian Y, Rong L, Nian W, He Y, 2020. Gastrointestinal features in COVID‐19 and the possibility of faecal transmission. Aliment Pharmaco Ther 51: 843851.
    [Google Scholar]
  35. Guan W; China Medical Treatment Expert Group for Covid-19 et al., 2019.Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382: 17081720.
    [Google Scholar]
  36. Yang L, Tu L, 2020. Implications of gastrointestinal manifestations of COVID-19. Lancet Gastroenterol Hepatol 5: 629630.
    [Google Scholar]
  37. Wu Y et al., 2020. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol 5: 434435.
    [Google Scholar]
  38. Liang W, Feng Z, Rao S, Xiao C, Xue X, Lin Z, Zhang Q, Qi W, 2020. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut 69: 11411143.
    [Google Scholar]
  39. Xiao F et al., 2020. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158: 18311833.e3.
    [Google Scholar]
  40. Zhou J et al., 2020. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med 26: 17.
    [Google Scholar]
  41. Tao YY, Tang LV, Hu Y, 2020. Treatments in the COVID-19 pandemic: an update on clinical trials. Expert Opin Emerg Drugs 25: 8188.
    [Google Scholar]
  42. Cai Q et al., 2020. COVID-19: abnormal liver function tests. J Hepatology 73: 566574.
    [Google Scholar]
  43. Su TH, Kao JH, 2020. The clinical manifestations and management of COVID-19-related liver injury. J Formos Med Assoc 119: 10161018.
    [Google Scholar]
  44. Bangash MN, Patel J, Parekh D, 2020. COVID-19 and the liver: little cause for concern. Lancet Gastroenterol Hepatol 5: 529530.
    [Google Scholar]
  45. Mao R et al., 2020. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 5: 667678.
    [Google Scholar]
  46. Gu J, Han B, Wang J, 2020. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 158: 15181519.
    [Google Scholar]
  47. Lagana SM et al., 2020. Hepatic pathology in patients dying of COVID-19: a series of 40 cases including clinical, histologic, and virologic data. Mod Pathol 19 (Epub ahead of print). Available at: https://doi.org/10.1038/s41379-020-00649-x.
    [Google Scholar]
  48. Xu L, Liu J, Lu M, Yang D, Zheng X, 2020. Liver injury during highly pathogenic human coronavirus infections. Liver Int 40: 9981004.
    [Google Scholar]
  49. Tian D, Ye Q, 2020. Hepatic complications of COVID‐19 and its treatment. J Med Virol (Epub ahead of print). Available at: https://doi.org/10.1002/jmv.26036.
    [Google Scholar]
  50. Musa S, 2020. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): what do we know till now? Arab J Gastroenterol 21: 38.
    [Google Scholar]
  51. Aldhaleei WA, Alnuaimi A, Bhagavathula AS, 2020. COVID-19 induced hepatitis B virus reactivation: a novel case from the United Arab Emirates. Cureus 12: e8645.
    [Google Scholar]
  52. Zha BS et al., 2013. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes. PLoS One 8: e59514.
    [Google Scholar]
  53. Ali N, 2020. Relationship between COVID-19 infection and liver injury: a review of recent data. Front Med 7: 458.
    [Google Scholar]
  54. Wang F, Wang H, Fan J, Zhang J, Wang H, Zhao Q, 2020. Pancreatic injury patterns in patients with COVID-19 pneumonia. Gastroenterology 159: 367370.
    [Google Scholar]
  55. Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z, 2020. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol 18: 21282130.e2.
    [Google Scholar]
  56. Gupta V, 2020. COVID-19 and acute pancreatitis: what do surgeons need to know? Indian J Surg 14 (Epub ahead of print). Available at: https://doi.org/10.1007/s12262-020-02447-w.
    [Google Scholar]
  57. Morrison AR, Johnson JM, Ramesh M, Bradley P, Jennings J, Smith ZR 2020. Acute hypertriglyceridemia in patients with COVID-19 receiving tocilizumab. Journal Med Virol (Epub ahead of print). Available at: https://doi.org/10.1002/jmv.25907.
  58. Azhideh A, 2020. COVID-19 neurological manifestations. Int Clin Neurosci J 7: 54.
    [Google Scholar]
  59. Wang Y, Wang Y, Chen Y, Qin Q, 2020. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. J Med Virol 92: 568576.
    [Google Scholar]
  60. Zhang Y et al., 2020. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med 382: e38.
    [Google Scholar]
  61. Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y, Wang D, Mao L, Jin H, Hu B, 2020. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol (Epub ahead of print). Available at: https://doi.org/10.1136/svn-2020-000431.
    [Google Scholar]
  62. Filatov A, Sharma P, Hindi F, Espinosa PS, 2020. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus 12: e7352.
    [Google Scholar]
  63. Morelli N, Rota E, Terracciano C, Immovilli P, Spallazzi M, Colombi D, Zaino D, Michieletti E, Guidetti D, 2020. The baffling case of ischemic stroke disappearance from the casualty department in the COVID-19 era. Eur Neurol 83: 213215.
    [Google Scholar]
  64. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, Liu C, Yang C, 2020. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 87: 1822.
    [Google Scholar]
  65. DosSantos MF et al., 2020. Neuromechanisms of SARS-CoV-2: a review. Front Neuroanat 14: 37.
    [Google Scholar]
  66. Miller AJ, Arnold AC, 2019. The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res 29: 231243.
    [Google Scholar]
  67. Iroegbu JD, Ifenatuoha CW, Ijomone OM, 2020. Potential neurological impact of coronaviruses: implications for the novel SARS-CoV-2. Neurol Sci 41: 13291337.
    [Google Scholar]
  68. Jin H et al., 2020. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc Neurol 5: 146151.
    [Google Scholar]
  69. Toscano G et al., 2020. Guillain–Barré syndrome associated with SARS-CoV-2. N Engl J Med 382: 25742576.
    [Google Scholar]
  70. Ye M, Ren Y, Lv T, 2020. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun 88: 945946.
    [Google Scholar]
  71. Dahm T, Rudolph H, Schwerk H, Schroten H, Tenenbaum T, 2016. Neuroinvasion and inflammation in viral central nervous system infections. Mediators Inflamm 2016: 8562805.
    [Google Scholar]
  72. Andriuta D, Roger PA, Thibault W, Toublanc B, Sauzay C, Castelain S, Godefroy O, Brochot E, 2020. COVID-19 encephalopathy: detection of antibodies against SARS-CoV-2 in CSF. J Neurology 12 (Epub ahead of print). Available at: https://doi.org/10.1007/s00415-020-09975-1.
    [Google Scholar]
  73. Poyiadji N et al., 2020. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 296: E119E120.
    [Google Scholar]
  74. Villalba NL et al., 2020. Anosmia and dysgeusia in the absence of other respiratory diseases: should COVID-19 infection be considered? Eur J Case Rep Intern Med 7: 001641.
    [Google Scholar]
  75. Lechien JR et al., 2020. Psychophysical olfactory tests and detection of COVID-19 in patients with sudden onset olfactory dysfunction: a prospective study Ear Nose Throat J. (Epub ahead of print 2020 May 29). doi: 10.1177/0145561320929169.
    [Google Scholar]
  76. Sedaghat Z, Karimi N, 2020. Guillain Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci 76: 233235.
    [Google Scholar]
  77. Hartung HP, Toyka KV, 2020. T‐cell and macrophage activation in experimental autoimmune neuritis and Guillain‐Barré syndrome. Ann Neurol 27: S57S63.
    [Google Scholar]
  78. Caress JB, Castoro RJ, Simmons Z, Scelsa SN, Lewis RA, Ahlawat A, Narayanaswami P, 2020. COVID-19-associated Guillain-Barre syndrome: the early pandemic experience. Muscle Nerve (Epub ahead of print). Available at: https://doi.org/10.1002/mus.27024.
    [Google Scholar]
  79. Mao L et al., 2020. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. JAMA Neurol 77: 683690.
    [Google Scholar]
  80. Lantos JE, Strauss SB, Lin E, 2020. COVID-19–associated Miller Fisher syndrome: MRI findings. Am J Neuroradiol 41: 11841186.
    [Google Scholar]
  81. Lechien JR et al., 2020. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 277: 22512261.
    [Google Scholar]
  82. Machado C, Gutierrez JV, 2020. Anosmia and ageusia as initial or unique symptoms after SARS-COV-2 virus infection. Preprints. Available at: https://doi.org/10.20944/preprints202004.0272.v1.
    [Google Scholar]
  83. Hjelmesæth J, Skaare D, 2020. Loss of smell or taste as the only symptom of COVID-19. Tidsskr Nor Laegeforen 140: 10.4045/tidsskr.20.0287. Available at: https://doi.org/10.4045/tidsskr.20.0287.
    [Google Scholar]
  84. Wang H, Zhou M, Brand J, Huang L, 2009. Inflammation and taste disorders: mechanisms in taste buds. Ann N Y Acad Sci 1170: 596603.
    [Google Scholar]
  85. Toljan K, 2020. Letter to the editor regarding the viewpoint “evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanism”. ACS Chem Neurosci 11: 11921194.
    [Google Scholar]
  86. Loffredo L, Pacella F, Pacella E, Tiscione G, Oliva A, Violi F, 2020. Conjunctivitis and COVID‐19: a meta‐analysis. J Med Virol (Epub ahead of print). Available at: https://doi.org/10.1002/jmv.25938.
    [Google Scholar]
  87. Zhang X, Chen X, Chen L, Deng C, Zou X, Liu W, Yu H, Chen B, Sun X, 2020. The evidence of SARS-CoV-2 infection on ocular surface. Ocul Surf 18: 360362.
    [Google Scholar]
  88. Chen L, Deng C, Chen X, Zhang X, Chen B, Yu H, Qin Y, Xiao K, Zhang H, Sun X, 2020. Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study. Acta Ophthalmologica (Epub ahead of print). Available at: https://doi.org/10.1111/aos.14472.
    [Google Scholar]
  89. Wu P, Duan F, Luo C, Liu Q, Qu X, Liang L, Wu K, 2020. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in hubei province, China. JAMA Ophthalmol 138: 575578.
    [Google Scholar]
  90. Belser JA, Rota PA, Tumpey TM, 2013. Ocular tropism of respiratory viruses. Microbiol Mol Biol Rev 77: 144156.
    [Google Scholar]
  91. Seah I, Agrawal R, 2020. Can the coronavirus disease 2019 (COVID-19) affect the eyes? a review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm 28: 391395.
    [Google Scholar]
  92. Kunutsor SK, Laukkanen JA, 2020. Renal complications in COVID-19: a systematic review and meta-analysis. Ann Med 19 (Epub ahead of print). Available at: https://doi.org/10.1080/07853890.2020.1790643.
    [Google Scholar]
  93. Li Z et al., 2020. Caution on kidney dysfunctions of COVID-19 patients. SSRN Electr J (Epub ahead of print 2020 Feb 12).
    [Google Scholar]
  94. Su H et al., 2020. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 98: 219227.
    [Google Scholar]
  95. Diao B et al., 2020. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. medRxiv. Available at: https://doi.org/10.1101/2020.03.04.20031120. Published April 10, 2020. Accessed June 29, 2020.
    [Google Scholar]
  96. Saraladevi N, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V, 2020. The novel coronavirus 2019 epidemic and kidneys. Kidney Int 97: 824828.
    [Google Scholar]
  97. Valizadeh R, Baradaran A, Mirzazadeh A, Bhaskar LVKS, 2020. Coronavirus-nephropathy; renal involvement in COVID-19. J Ren Inj Prev 9: e18.
    [Google Scholar]
  98. Ronco C, Reis T, 2020. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol 16: 308310.
    [Google Scholar]
  99. Husain-Syed F, Slutsky AS, Ronco C, 2016. Lung-kidney cross-talk in the critically ill patient. Am J Respir Crit Care Med 194: 402414.
    [Google Scholar]
  100. Wu C et al., 2020. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Int Med 180: 934943.
    [Google Scholar]
  101. Li W et al., 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450454.
    [Google Scholar]
  102. Ma L, Xie W, Li D, Shi L, Mao Y, Xiong Y, Zhang Y, Zhang M, 2020. Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study. medRxiv (Preprint). Available at: https://doi.org/10.1101/2020.03.21.20037267.
    [Google Scholar]
  103. Song C et al., 2020. Detection of 2019 novel coronavirus in semen and testicular biopsy specimen of COVID-19 patients. medRxiv. Available at: https://doi.org/10.1101/2020.2003.2031.20042333.
    [Google Scholar]
  104. Recalcati S, 2020. Cutaneous manifestations in COVID‐19: a first perspective. J Eur Acad Dermatol Venereol 34: e212e213.
    [Google Scholar]
  105. Sachdeva M, Gianotti R, Shah M, Bradanini L, Tosi D, Veraldi S, Ziv M, Leshem E, Dodiuk-Gad RP, 2020. Cutaneous manifestations of COVID-19: report of three cases and a review of literature. J Dermatol Sci 98: 7581.
    [Google Scholar]
  106. Joob B, Wiwanitkit V, 2020. COVID-19 can present with a rash and be mistaken for dengue. J Am Acad Dermatol 82: e177.
    [Google Scholar]
  107. Salido M, Joven B, D’Cruz DP, Khamashta MA, Hughes GRV, 2020. Increased cutaneous reactions to hydroxychloroquine (plaquenil) possibly associated with formulation change: comment on the letter by Alarcón. Arthritis Rheum 46: 33923396.
    [Google Scholar]
  108. Jamiolkowski D, Mühleisen B, Müller S, Navarini AA, Tzankov A, Roider E, 2020. SARS-CoV-2 PCR testing of skin for COVID-19 diagnostics: a case report. Lancet 396: 598599.
    [Google Scholar]
  109. Disser NP et al., 2020. Musculoskeletal consequences of COVID-19. J Bone Joint Surg Am 102: 11971204.
    [Google Scholar]
  110. Anand P, Slama MCC, Kaku M, Ong C, Cervantes-Arslanian AM, Zhou L, David WS, Guidon AC, 2020. COVID‐19 in patients with myasthenia gravis. Muscle Nerve 62: 254258.
    [Google Scholar]
  111. Beydon M, Chevalier K, Al Tabaa O, Hamroun S, Delettre AS, Thomas M, Herrou J, Riviere E, Mariette X, 2020. Myositis as a manifestation of SARS-CoV-2. Ann Rheum Dis (Epub ahead of print). Available at: https://doi.org/10.1136/annrheumdis-2020-217573.
    [Google Scholar]
  112. Wang W et al., 2020. Thyroid function abnormalities in COVID-19 patients. medRxiv. Available at: https://doi.org/10.1101/2020.06.15.20130807.
    [Google Scholar]
  113. Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A, 2020. COVID‐19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab (Epub ahead of print). Available at: https://doi.org/10.1111/dom.14057.
    [Google Scholar]
  114. Gadiparthi C, Bassi M, Yegneswaran B, Ho S, Pitchumoni CS, 2020. Hyperglycemia, hypertriglyceridemia, and acute pancreatitis in COVID-19 infection: clinical implications. Pancreas 49: e62e63.
    [Google Scholar]
  115. Pal R, Banerjee M, 2020. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest 43: 10271031.
    [Google Scholar]
  116. Kassir R, 2020. Risk of COVID-19 for patients with obesity. Obes Rev 21: e13034.
    [Google Scholar]
  117. Bellastella G, Maiorino M, Esposito K, 2020. Endocrine complications of COVID-19: what happens to the thyroid and adrenal glands? J Endocrinol Invest 43: 11691170.
    [Google Scholar]
  118. Velayoudom FL, Wijewickrama PSA, Ranathunga HI, Somasundaram N, 2020. Endocrine vigilance in COVID-19. J Pak Med Assoc 70: S83S86.
    [Google Scholar]
  119. Pal R, 2020. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine 68: 251252.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.20-0986
Loading
/content/journals/10.4269/ajtmh.20-0986
Loading

Data & Media loading...

  • Received : 09 Aug 2020
  • Accepted : 07 Sep 2020
  • Published online : 15 Sep 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error