1921
Volume 103, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The COVID-19 pandemic has proved to be an enormous challenge to the health of the world population with tremendous consequences for the world economy. New knowledge about COVID-19 is being acquired continuously. Although the main manifestation of COVID-19 is SARS, dysfunction in other organs has been described in the last months. Neurological aspects of COVID-19 are still an underreported subject. However, a plethora of previous studies has shown that human CoVs might be neurotropic, neuroinvasive, and neurovirulent, highlighting the importance of this knowledge by physicians. Besides, several neurological manifestations had been described as complications of two other previous outbreaks of CoV diseases (SARS ad Middle East respiratory syndrome). Therefore, we should be watchful, searching for early evidence of neurological insults and promoting clinical protocols to investigate them. Our objectives are to review the potential neuropathogenesis of this new CoV and the neurological profile of COVID-19 patients described so far.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.20-0447
2020-07-17
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/3/tpmd200447.html?itemId=/content/journals/10.4269/ajtmh.20-0447&mimeType=html&fmt=ahah

References

  1. Wang D et al., 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323: 106110699.
    [Google Scholar]
  2. Guan WJ et al., 2020. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382: 17081720.
    [Google Scholar]
  3. Kim JE, Heo JH, Kim HO, Song SH, Park SS, Park TH, Ahn JY, Kim MK, Choi JP, 2017. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol 13: 227233.
    [Google Scholar]
  4. Tsai LK, Hsieh ST, Chao CC, Chen YC, Lin YH, Chang SC, Chang YC, 2004. Neuromuscular disorders in severe acute respiratory syndrome. Arch Neurol 61: 16691673.
    [Google Scholar]
  5. Lau KK, Yu WC, Chu CM, Lau ST, Sheng B, Yuen KY, 2004. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis 10: 342344.
    [Google Scholar]
  6. Arabi YM et al., 2015. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection 43: 495501.
    [Google Scholar]
  7. Al-Hameed FM, 2017. Spontaneous intracranial hemorrhage in a patient with Middle East respiratory syndrome corona virus. Saudi Med J 38: 196200.
    [Google Scholar]
  8. Mao L et al., 2020. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 77: 19.
    [Google Scholar]
  9. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B, 2020. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology 2020: 201187 [Epub ahead of print, 2020 Mar 31]. Available at: https://doi.org/10.1148/radiol.2020201187.
    [Google Scholar]
  10. Sun T, Guan J, 2020. Novel coronavirus and central nervous system. Eur J Neurol 2020: 10.1111/ene.14227 [Epub ahead of print, 2020 Mar 26]. Available at: https://doi.org/10.1111/ene.14227.
    [Google Scholar]
  11. Zhao H, Shen D, Zhou H, Liu J, Chen S, 2020. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol 19: 383384.
    [Google Scholar]
  12. Desforges M, Le Coupanec A, Brison E, Meessen-Pinard M, Talbot PJ, 2014. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Adv Exp Med Biol 807: 7596.
    [Google Scholar]
  13. Arbour N, Day R, Newcombe J, Talbot PJ, 2000. Neuroinvasion by human respiratory coronaviruses. J Virol 74: 89138921.
    [Google Scholar]
  14. Butler N, Pewe L, Trandem K, Perlman S, 2006. Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated. Virology 347: 410421.
    [Google Scholar]
  15. Talbot PJ, Desforges M, Dubé M, Le Coupanec A, 2016. Human respiratory neurotropic coronaviruses: an ambiguous relationship between neurovirulence and protein cleavage [article in French]. Med Sci (Paris) 32: 696699.
    [Google Scholar]
  16. Nichols WG, Peck Campbell AJ, Boeckh M, 2008. Respiratory viruses other than influenza virus: impact and therapeutic advances. Clin Microbiol Rev 21: 274290.
    [Google Scholar]
  17. Kutter JS, Spronken MI, Fraaij PL, Fouchier RA, Herfst S, 2018. Transmission routes of respiratory viruses among humans. Curr Opin Virol 28: 142151.
    [Google Scholar]
  18. Talbot HK, Falsey AR, 2010. The diagnosis of viral respiratory disease in older adults. Clin Infect Dis 50: 747751.
    [Google Scholar]
  19. Tregoning JS, Schwarze J, 2010. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 23: 7498.
    [Google Scholar]
  20. Swanson PA, McGavern DB, 2015. Viral diseases of the central nervous system. Curr Opin Virol 11: 4454.
    [Google Scholar]
  21. Koyuncu OO, Hogue IB, Enquist LW, 2013. Virus infections in the nervous system. Cell Host Microbe 13: 379393.
    [Google Scholar]
  22. Gane SB, Kelly C, Hopkins C, 2020. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology 58: 299301.
    [Google Scholar]
  23. Giacomelli A et al., 2020. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis 2020: ciaa330 [Epub ahead of print, 2020 Mar 26]. Available at: https://doi.org/10.1093/cid/ciaa330.
    [Google Scholar]
  24. Cabirac GF, Soike KF, Zhang JY, Hoel K, Butunoi C, Cai GY, Johnson S, Murray RS, 1994. Entry of coronavirus into primate CNS following peripheral infection. Microb Pathog 16: 349357.
    [Google Scholar]
  25. Holmes KV, 2003. SARS-associated coronavirus. N Engl J Med 348: 19481951.
    [Google Scholar]
  26. Weiss SR, Leibowitz JL, 2011. Coronavirus pathogenesis. Adv Virus Res 81: 85164.
    [Google Scholar]
  27. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD, 2020. Renin-angiotensin-aldosterone system inhibitors in patients with COVID-19. N Engl J Med 382: 16531659.
    [Google Scholar]
  28. Xia H, Lazartigues E, 2008. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem 107: 14821494.
    [Google Scholar]
  29. Cabeça TK, Granato C, Bellei N, 2013. Epidemiological and clinical features of human coronavirus infections among different subsets of patients. Influenza Other Respir Viruses 7: 10401047.
    [Google Scholar]
  30. Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE, 2010. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 48: 29402947.
    [Google Scholar]
  31. Matoba Y et al., 2015. Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan. Jpn J Infect Dis 68: 138141.
    [Google Scholar]
  32. Burks JS, DeVald BL, Jankovsky LD, Gerdes JC, 1980. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science 209: 933934.
    [Google Scholar]
  33. Matthews AE, Weiss SR, Paterson Y, 2002. Murine hepatitis virus–a model for virus-induced CNS demyelination. J Neurovirol 8: 7685.
    [Google Scholar]
  34. Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ, 2014. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 194: 145158.
    [Google Scholar]
  35. Hu D et al., 2018. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect 7: 154.
    [Google Scholar]
  36. Song HD et al., 2005. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 102: 24302435.
    [Google Scholar]
  37. Eickmann M et al., 2003. Phylogeny of the SARS coronavirus. Science 302: 15041505.
    [Google Scholar]
  38. Marra MA et al., 2003. The genome sequence of the SARS-associated coronavirus. Science 300: 13991404.
    [Google Scholar]
  39. Rota PA et al., 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 13941399.
    [Google Scholar]
  40. Peiris JSM, Yuen KY, Osterhaus ADME, Stöhr K, 2003. The severe acute respiratory syndrome. N Engl J Med 349: 24312441.
    [Google Scholar]
  41. Booth CM, Stewart TE, 2005. Severe acute respiratory syndrome and critical care medicine: the Toronto experience. Crit Care Med 33 (Suppl 1): S53S60.
    [Google Scholar]
  42. Hwang CS, 2006. Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwan 15: 2628.
    [Google Scholar]
  43. Hung ECW et al., 2003. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem 49: 21082109.
    [Google Scholar]
  44. Xu Z et al., 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8: 420422.
    [Google Scholar]
  45. Gu J et al., 2005. Multiple organ infection and the pathogenesis of SARS. J Exp Med 202: 415424.
    [Google Scholar]
  46. Tso EYK, Tsang OTY, Choi KW, Wong TY, So MK, Leung WS, Lai JY, Ng TK, Lai TS; Princess Margaret Hospital SARS Study Group, 2004. Persistence of physical symptoms in and abnormal laboratory findings for survivors of severe acute respiratory syndrome. Clin Infect Dis 38: 1338.
    [Google Scholar]
  47. Leow MKS, Kwek DSK, Ng AWK, Ong KC, Kaw GJL, Lee LSU, 2005. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf) 63: 197202.
    [Google Scholar]
  48. Glass WG, Subbarao K, Murphy B, Murphy PM, 2004. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol 173: 40304039.
    [Google Scholar]
  49. Li YC, Bai WZ, Hirano N, Hayashida T, Hashikawa T, 2012. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res 163: 628635.
    [Google Scholar]
  50. Lu R et al., 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395: 565574.
    [Google Scholar]
  51. Zhou P et al., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270273.
    [Google Scholar]
  52. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS, 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 12601263.
    [Google Scholar]
  53. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S, 2008. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 82: 72647275.
    [Google Scholar]
  54. Baig AM, Khaleeq A, Ali U, Syeda H, 2020. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 11: 995998.
    [Google Scholar]
  55. Matsuda K, Park CH, Sunden Y, Kimura T, Ochiai K, Kida H, Umemura T, 2004. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza A virus in mice. Vet Pathol 41: 101107.
    [Google Scholar]
  56. Hadziefendic S, Haxhiu MA, 1999. CNS innervation of vagal preganglionic neurons controlling peripheral airways: a transneuronal labeling study using pseudorabies virus. J Auton Nerv Syst 76: 135145.
    [Google Scholar]
  57. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, Gibson-Corley KN, Meyerholz DK, McCray PB Jr., 2016. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis 213: 712722.
    [Google Scholar]
  58. McCray PB et al., 2007. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 81: 813821.
    [Google Scholar]
  59. Lechien JR et al., 2020. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 277: 22512261.
    [Google Scholar]
  60. Xu J et al., 2005. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis 41: 10891096.
    [Google Scholar]
  61. Moriguchi T et al., 2020. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis 94: 5558.
    [Google Scholar]
  62. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, United Kingdom, 2020. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395: 10331034.
    [Google Scholar]
  63. Toscano G et al., 2020. Guillain-barré syndrome associated with SARS-CoV-2. N Engl J Med 382: 25742576.
    [Google Scholar]
  64. Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, San Pedro-Murillo E, Bermejo-Guerrero L, Gordo-Mañas R, de Aragón-Gómez F, Benito-León J, 2020. Miller fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020:10.1212/WNL.0000000000009619 [Epub ahead of print, 2020 Apr 17]. Available at: https://doi.org/10.1212/WNL.0000000000009619.
    [Google Scholar]
  65. Goh Y, Beh DLL, Makmur A, Somani J, Chan ACY, 2020. Pearls and oysters: facial nerve palsy as a neurological manifestation of COVID-19 infection. Neurology 2020: 10.1212/WNL.0000000000009863 [Epub ahead of print, 2020 May 21]. Available at: https://doi.org/10.1212/WNL.0000000000009863.
    [Google Scholar]
  66. Helms J et al., 2020. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 382: 22682270.
    [Google Scholar]
  67. Oxley TJ et al., 2020. Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med 382: e60.
    [Google Scholar]
  68. Connors JM, Levy JH, 2020. COVID-19 and its implications for thrombosis and anticoagulation. Blood 135: 20332040.
    [Google Scholar]
  69. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, Zhang Z, 2020. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. J Thromb Haemost 18: 13241329.
    [Google Scholar]
  70. Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, Sordillo EM, Fowkes M, 2020. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol 92: 699702.
    [Google Scholar]
  71. De Felice FG, Tovar-Moll F, Moll J, Munoz DP, Ferreira ST, 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the central nervous system. Trends Neurosci 43: 355357.
    [Google Scholar]
  72. Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM, 2018. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci 12: 386.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.20-0447
Loading
/content/journals/10.4269/ajtmh.20-0447
Loading

Data & Media loading...

  • Received : 08 May 2020
  • Accepted : 13 Jul 2020
  • Published online : 17 Jul 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error