Volume 59, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The lack of a quantitative framework that describes the dynamic relationships between infection and morbidity has constrained efforts aimed at the community-level control of lymphatic filariasis. In this paper, we describe the development and validation of EPIFIL, a dynamic model of filariasis infection intensity and chronic disease. Infection dynamics are modeled using the well established immigration-death formulation, incorporating the acquisition of immunity to infective larvae over time. The dynamics of disease (lymphodema and hydrocele) are modeled as a catalytic function of a variety of factors, including worm load and the impact of immunopathological responses. The model was parameterized using age-stratified data collected from a Bancroftian filariasis endemic area in Pondicherry in southern India. The fitted parameters suggest that a relatively simple model including only acquired immunity to infection and irreversible progression to disease can satisfactorily explain the observed infection and disease patterns. Disease progression is assumed to be a consequence of worm induced damage and to occur at a high rate for hydrocele and a low rate for lymphodema. This suggests that immunopathology involvement may not be a necessary component of observed age-disease profiles. These findings support a central role for worm burden in the initiation and progression of chronic filarial disease.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error