1921
Volume 58, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645
USD

Abstract

We have developed a typing system using natural sequence variation in the thrombospondin-related adhesive protein (TRAP) gene of Plasmodium falciparum. This method permits a haplotype to be assigned to any particular TRAP gene. We have applied this method to a hospital-based, case control-study in Mali. Previous sequence variation and conservation in TRAP has been confirmed. Particular TRAP haplotypes can be used as geographic hallmarks. Because of the high level of conflict between characters, we have examined the phylogenetic relationships between parasites using a network approach. Having received patient samples from urban and periurban areas of Bamako, the majority of haplotypes were closely related and distinct from TRAP sequences present in other continents. This suggests that the structure of TRAP can only tolerate a limited number of sequence variations to preserve its function but that this is sufficient to allow the parasite to evade the host's immune system until a long-lived immune response can be maintained. It may also reflect host genetics in that certain variants may escape the host immune response more efficiently than others. For vaccine design, sequences from the major regional variants may need to be considered in the production of effective subunit vaccines.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.1998.58.81
1998-01-01
2017-09-26
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.1998.58.81
Loading

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error