1921
Volume 103, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Blood cultures (BCs) detect an estimated 50% of typhoid fever cases. There is need for validated clinical criteria to define cases that are BC negative, both to help direct empiric antibiotic treatment and to better evaluate the magnitude of protection conferred by typhoid vaccines. To derive and validate a clinical rule for defining BC-negative typhoid fever, we assessed, in a cluster-randomized effectiveness trial of Vi-polysaccharide (ViPS) typhoid vaccine in Kolkata, India, 14,797 episodes of fever lasting at least 3 days during 4 years of comprehensive, BC-based surveillance of 70,865 persons. A recursive partitioning algorithm was used to develop a decision rule to predict BC-proven typhoid cases with a diagnostic specificity of 97–98%. To validate this rule as a definition for BC-negative typhoid fever, we assessed whether the rule defined culture-negative syndromes prevented by ViPS vaccine. In a training subset of individuals, we identified the following two rules: rule 1: patients aged < 15 years with prolonged fever accompanied by a measured body temperature ≥ 100°F, headache, and nausea; rule 2: patients aged ≥ 15 years with prolonged fever accompanied by nausea and palpable liver but without constipation. The adjusted protective efficacy of ViPS against clinical typhoid defined by these rules in persons aged ≥ 2 years in a separate validation subset was 33% (95% CI: 4–53%). We have defined and validated a clinical rule for predicting BC-negative typhoid fever using a novel vaccine probe approach. If validated in other settings, this rule may be useful to guide clinical care and to enhance typhoid vaccine evaluations.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0968
2020-06-22
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/2/tpmd190968.html?itemId=/content/journals/10.4269/ajtmh.19-0968&mimeType=html&fmt=ahah

References

  1. GBD 2017 Typhoid and Paratyphoid Collaborators, 2019. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 19: 369381.
    [Google Scholar]
  2. Buckle GC, Walker CL, Black RE, 2012. Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J Global Health 2: 010401.
    [Google Scholar]
  3. Crump JA, Sjolund-Karlsson M, Gordon MA, Parry CM, 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 28: 901937.
    [Google Scholar]
  4. Crump JA, Luby SP, Mintz ED, 2004. The global burden of typhoid fever. Bull World Health Organ 82: 346353.
    [Google Scholar]
  5. Antillon M, Saad NJ, Baker S, Pollard AJ, Pitzer VE, 2018. The relationship between blood sample volume and diagnostic sensitivity of blood culture for typhoid and paratyphoid fever: a systematic review and meta-analysis. J Infect Dis 218 (Suppl_4): S255S267.
    [Google Scholar]
  6. Storey HL, Huang Y, Crudder C, Golden A, de los Santos T, Hawkins K, 2015. A meta-analysis of typhoid diagnostic accuracy studies: a recommendation to adopt a standardized composite reference. PLoS One 10: e0142364.
    [Google Scholar]
  7. Mogasale V, Ramani E, Mogasale VV, Park J, 2016. What proportion of Salmonella Typhi cases are detected by blood culture? A systematic literature review. Ann Clin Microbiol Antimicrob 15: 32.
    [Google Scholar]
  8. Vollaard AM, Ali S, Widjaja S, Asten HA, Visser LG, Surjadi C, van Dissel JT, 2005. Identification of typhoid fever and paratyphoid fever cases at presentation in outpatient clinics in Jakarta, Indonesia. Trans R Soc Trop Med Hyg 99: 440450.
    [Google Scholar]
  9. Arora P, Thorlund K, Brenner DR, Andrews JR, 2019. Comparative accuracy of typhoid diagnostic tools: a Bayesian latent-class network analysis. PLoS Negl Trop Dis 13: e0007303.
    [Google Scholar]
  10. Parry CM, 2003. Antimicrobial drug resistance in Salmonella enterica. Curr Opin Infect Dis. 16: 467472.
    [Google Scholar]
  11. Holt KE et al., 2011. Emergence of a globally dominant IncHI1 plasmid type associated with multiple drug resistant typhoid. PLoS Negl Trop Dis 5: e1245.
    [Google Scholar]
  12. Akhtar S, Sarker MR, Jabeen K, Sattar A, Qamar A, Fasih N, 2015. Antimicrobial resistance in Salmonella enterica serovar typhi and paratyphi in south Asia-current status, issues and prospects. Crit Rev Microbiol 41: 536545.
    [Google Scholar]
  13. Darton TC et al., 2016. Using a human challenge model of infection to measure vaccine efficacy: a randomised, controlled trial comparing the typhoid vaccines M01ZH09 with placebo and Ty21a. PLoS Negl Trop Dis 10: e0004926.
    [Google Scholar]
  14. Jin C et al., 2017. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: a randomised controlled, phase 2b trial. Lancet 390: 24722480.
    [Google Scholar]
  15. Mohan VK, Varanasi V, Singh A, Pasetti MF, Levine MM, Venkatesan R, Ella KM, 2015. Safety and immunogenicity of a Vi polysaccharide-tetanus toxoid conjugate vaccine (Typbar-TCV) in healthy infants, children, and adults in typhoid endemic areas: a multicenter, 2-cohort, open-label, double-blind, randomized controlled phase 3 study. Clin Infect Dis 61: 393402.
    [Google Scholar]
  16. Meiring JE, Gibani M; TyVAC Consortium Meeting Group, 2017.The Typhoid Vaccine Acceleration Consortium (TyVAC): vaccine effectiveness study designs: accelerating the introduction of typhoid conjugate vaccines and reducing the global burden of enteric fever. Report from a meeting held on 26–27 October 2016, Oxford, UK. Vaccine 35: 50815088.
    [Google Scholar]
  17. Carey ME, Diaz ZI, Broadstock M, Bailey R, Bentsi-Enchill AD, Larson HJ, 2019. Toward control? The prospects and challenges of typhoid conjugate vaccine introduction. Clin Infect Dis 69 (Suppl_5): S408S411.
    [Google Scholar]
  18. Gessner BD et al., 2005. Incidences of vaccine-preventable Haemophilus influenzae type b pneumonia and meningitis in Indonesian children: hamlet-randomised vaccine-probe trial. Lancet 365: 4352.
    [Google Scholar]
  19. Gessner BD, Sedyaningsih ER, Griffiths UK, Sutanto A, Linehan M, Mercer D, Mulholland EK, Walker DG, Steinhoff M, Nadjib M, 2008. Vaccine-preventable Haemophilus influenza type B disease burden and cost-effectiveness of infant vaccination in Indonesia. Pediatr Infect Dis J 27: 438443.
    [Google Scholar]
  20. Gessner BD, Brooks WA, Neuzil KM, Vernet G, Bright RA, Tam JS, Bresee J, Monto AS, 2013.Vaccines as a tool to estimate the burden of severe influenza in children of low-resourced areas (November 30-December 1, 2012, Les Pensieres, Veyrier-du-Lac, France). Vaccine 31: 32223228.
    [Google Scholar]
  21. Gessner BD, Halloran ME, Khan I, 2015. The case for a typhoid vaccine probe study and overview of design elements. Vaccine 33 (Suppl 3): C30C35.
    [Google Scholar]
  22. Feikin DR, Scott JA, Gessner BD, 2014. Use of vaccines as probes to define disease burden. Lancet 383: 17621770.
    [Google Scholar]
  23. Sur D et al., 2009. A cluster-randomized effectiveness trial of Vi typhoid vaccine in India. N Engl J Med 361: 335344.
    [Google Scholar]
  24. Keddy KH, Sooka A, Letsoalo ME, Hoyland G, Chaignat CL, Morrissey AB, Crump JA, 2011. Sensitivity and specificity of typhoid fever rapid antibody tests for laboratory diagnosis at two sub-Saharan African sites. Bull World Health Organ 89: 640647.
    [Google Scholar]
  25. Akoh JA, 1991. Relative sensitivity of blood and bone marrow cultures in typhoid fever. Trop Doct 21: 174176.
    [Google Scholar]
  26. Parry CM, Wijedoru L, Arjyal A, Baker S, 2011. The utility of diagnostic tests for enteric fever in endemic locations. Expert Rev Anti infect Ther 9: 711725.
    [Google Scholar]
  27. Wain J, Hosoglu S, 2008. The laboratory diagnosis of enteric fever. J Infect Dev Ctries 2: 421425.
    [Google Scholar]
  28. Baker S, Sarwar Y, Aziz H, Haque A, Ali A, Dougan G, Wain J, Haque A, 2005. Detection of Vi-negative Salmonella enterica serovar typhi in the peripheral blood of patients with typhoid fever in the Faisalabad region of Pakistan. J Clin Microbiol 43: 44184425.
    [Google Scholar]
  29. Strobl C, Malley J, Tutz G, 2009. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 14: 323348.
    [Google Scholar]
  30. Bopp CABF, Wells JG, Strockbine NA, 1999. Escherichia, shigella and salmonella. Murray PR, ed. Manual of Clinical Biology, 7th edition. Washington, DC: ASM Press.
    [Google Scholar]
  31. Oonsivilai M, Mo Y, Luangasanatip N, Lubell Y, Miliya T, Tan P, Loeuk L, Turner P, Cooper BS, 2018. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children’s hospital in Cambodia. Wellcome Open Res 3: 131.
    [Google Scholar]
  32. Schaffer C, 1993. Selecting a classification method by cross-validation. Mach Learn 13: 135143.
    [Google Scholar]
  33. Hand DJ, 2009. Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach Learn 77: 103123.
    [Google Scholar]
  34. Faraggi D, Reiser B, 2002. Estimation of the area under the ROC curve. Stat Med 21: 30933106.
    [Google Scholar]
  35. Amorim LD, Cai J, 2015. Modelling recurrent events: a tutorial for analysis in epidemiology. Int J Epidemiol 44: 324333.
    [Google Scholar]
  36. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M, 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf 12: 77.
    [Google Scholar]
  37. Terry M, Therneau PMG, 2000. Modeling Survival Data: Extending the Cox Model. New York, NY: Springer.
    [Google Scholar]
  38. Wickham H, François R, Henry L, Müller K, 2020. dplyr: A Grammar of Data Manipulation. R Package Version 0.7.6. https://CRAN.R-project.org/package=dplyr.
    [Google Scholar]
  39. Gilli M, Maringer D, Schumann E, 2011. Numerical Methods and Optimization in Finance. Cambridge, MA: Academic Press.
    [Google Scholar]
  40. Sinha A, Sazawal S, Kumar R, Sood S, Reddaiah VP, Singh B, Rao M, Naficy A, Clemens JD, Bhan MK, 1999. Typhoid fever in children aged less than 5 years. Lancet 354: 734737.
    [Google Scholar]
  41. Siddiqui FJ, Rabbani F, Hasan R, Nizami SQ, Bhutta ZA, 2006. Typhoid fever in children: some epidemiological considerations from Karachi, Pakistan. Int J Infect Dis 10: 215222.
    [Google Scholar]
  42. Walia M, Gaind R, Mehta R, Paul P, Aggarwal P, Kalaivani M, 2005. Current perspectives of enteric fever: a hospital-based study from India. Ann Trop Paediatr 25: 161174.
    [Google Scholar]
  43. Papaevangelou V, Syriopoulou V, Charissiadou A, Pangalis A, Mostrou G, Theodoridou M, 2004. Salmonella bacteraemia in a tertiary children’s hospital. Scand J Infect Dis 36: 547551.
    [Google Scholar]
  44. Ross IN, Abraham T, 1987. Predicting enteric fever without bacteriological culture results. Trans R Soc Trop Med Hyg 81: 374377.
    [Google Scholar]
  45. Matono T, Kutsuna S, Kato Y, Katanami Y, Yamamoto K, Takeshita N, Hayakawa K, Kanagawa S, Kaku M, Ohmagari N, 2017. Role of classic signs as diagnostic predictors for enteric fever among returned travellers: relative bradycardia and eosinopenia. PLoS One 12: e0179814.
    [Google Scholar]
  46. Haq SA, Alam MN, Hossain SM, Ahmed T, Tahir M, 1997. Value of clinical features in the diagnosis of enteric fever. Bangladesh Med Res Counc Bull 23: 4246.
    [Google Scholar]
  47. Hosoglu S, Geyik MF, Akalin S, Ayaz C, Kokoglu OF, Loeb M, 2006. A simple validated prediction rule to diagnose typhoid fever in Turkey. Trans R Soc Trop Med Hyg 100: 10681074.
    [Google Scholar]
  48. Khan M, Coovadia YM, Connoly C, Sturm AW, 1998. The early diagnosis of typhoid fever prior to the widal test and bacteriological culture results. Acta Trop 69: 165173.
    [Google Scholar]
  49. Acharya IL et al., 1987. Prevention of typhoid fever in Nepal with the Vi capsular polysaccharide of Salmonella typhi. A preliminary report. N Engl J Med 317: 11011104.
    [Google Scholar]
  50. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ, 2002. Typhoid fever. N Engl J Med 347: 17701782.
    [Google Scholar]
  51. Jamka LP, Simiyu KW, Bentsi-Enchill AD, Mwisongo AJ, Matzger H, Marfin AA, Pollard AJ, Neuzil KM, 2019. Accelerating typhoid conjugate vaccine introduction: what can be learned from prior new vaccine introduction initiatives? Clin Infect Dis 68 (Suppl_2): S171S176.
    [Google Scholar]
  52. Meiring JE et al., 2019. Typhoid vaccine acceleration consortium Malawi: a phase III, randomized, double-blind, controlled trial of the clinical efficacy of typhoid conjugate vaccine among children in Blantyre, Malawi. Clin Infect Dis 68 (Supple_2): S50S58.
    [Google Scholar]
  53. Theiss-Nyland K et al., 2019. Assessing the impact of a Vi-polysaccharide conjugate vaccine in preventing typhoid infection among Bangladeshi children: a protocol for a phase IIIb trial. Clin Infect Dis 68 (Supple_2): S74S82.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0968
Loading
/content/journals/10.4269/ajtmh.19-0968
Loading

Data & Media loading...

Supplemental table

  • Received : 26 Dec 2019
  • Accepted : 04 May 2020
  • Published online : 22 Jun 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error