1921
Volume 103, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

In moving toward malaria elimination, finer scale malaria risk maps are required to identify hotspots for implementing surveillance–response activities, allocating resources, and preparing health facilities based on the needs and necessities at each specific area. This study aimed to demonstrate the use of multi-criteria decision analysis (MCDA) in conjunction with geographic information systems (GISs) to create a spatial model and risk maps by integrating satellite remote-sensing and malaria surveillance data from 18 counties of Yunnan Province along the China–Myanmar border. The MCDA composite and annual models and risk maps were created from the consensus among the experts who have been working and know situations in the study areas. The experts identified and provided relative factor weights for nine socioeconomic and disease ecology factors as a weighted linear combination model of the following: ([Forest coverage × 0.041] + [Cropland × 0.086] + [Water body × 0.175] + [Elevation × 0.297] + [Human population density × 0.043] + [Imported case × 0.258] + [Distance to road × 0.030] + [Distance to health facility × 0.033] + [Urbanization × 0.036]). The expert-based model had a good prediction capacity with a high area under curve. The study has demonstrated the novel integrated use of spatial MCDA which combines multiple environmental factors in estimating disease risk by using decision rules derived from existing knowledge or hypothesized understanding of the risk factors via diverse quantitative and qualitative criteria using both data-driven and qualitative indicators from the experts. The model and fine MCDA risk map developed in this study could assist in focusing the elimination efforts in the specifically identified locations with high risks.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0854
2020-06-29
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/2/tpmd190854.html?itemId=/content/journals/10.4269/ajtmh.19-0854&mimeType=html&fmt=ahah

References

  1. Zhang Q, Sun J, Zhang Z, Geng Q, Lai S, Hu W, Clements ACA, Li Z, 2016. Risk assessment of malaria in land border regions of China in the context of malaria elimination. Malar J 15: 546.
    [Google Scholar]
  2. Shi B, Zheng J, Qiu H, Yang GJ, Xia S, Zhou XN, 2017. Risk assessment of malaria transmission at the border area of China and Myanmar. Infect Dis Poverty 6: 108.
    [Google Scholar]
  3. Zhao X, Thanapongtharm W, Lawawirojwong S, Sattabongkot J, Wei C, Tang Y, Zhou Y, Li J, Kaewkungwal J, 2019. Spatio-temporal analysis of malaria cases along ChinaMyanmar border of Yunnan province, 2011–2016. Joint Int Trop Med Meet Proc 8: 4150.
    [Google Scholar]
  4. Hongoh V, Hoen AG, Aenishaenslin C, Waaub JP, Bélanger D, Michel P, 2011. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases. Int J Health Geogr 10: 70.
    [Google Scholar]
  5. Stefani A, Roux E, Fotsing JM, Crme B, 2011. Studying relationships between environment and malaria incidence in Camopi (French Guiana) through the objective selection of buffer-based landscape characterisations. Int J Health Geogr 10: 65.
    [Google Scholar]
  6. Cui L et al., 2012. Malaria in the greater Mekong subregion: heterogeneity and complexity. Acta Trop 121: 227239.
    [Google Scholar]
  7. Bi Y, Hu W, Yang H, Zhou XN, Yu W, Guo Y, Tong S, 2013. Spatial patterns of malaria reported deaths in Yunnan province, China. Am J Trop Med Hyg 88: 526535.
    [Google Scholar]
  8. Hundessa SH, Williams G, Li S, Guo J, Chen L, Zhang W, Guo Y, 2016. Spatial and space-time distribution of Plasmodium vivax and Plasmodium falciparum malaria in China, 2005–2014. Malar J 15: 595.
    [Google Scholar]
  9. Lin H, Lu L, Tian L, Zhou S, Wu H, Bi Y, Ho SC, Liu Q, 2009. Spatial and temporal distribution of falciparum malaria in China. Malar J 8: 130.
    [Google Scholar]
  10. Xia J, Cai S, Zhang H, Lin W, Fan Y, Qiu J, Sun L, Chang B, Zhang Z, Nie S, 2015. Spatial, temporal, and spatial analysis of malaria in Hubei province, China from 2004–2011. Malar J 14: 145.
    [Google Scholar]
  11. Zhang Y, Liu QY, Luan RS, Liu XB, Zhou GC, Jiang JY, Li HS, Li ZF, 2012. Spatial-temporal analysis of malaria and the effect of environmental factors on its incidence in Yongcheng, China, 2006–2010. BMC Public Health 12: 544.
    [Google Scholar]
  12. Zhou SS, Zhang SS, Wang JJ, Zheng X, Huang F, Li WD, Xu X, Zhang HW, 2012. Spatial correlation between malaria cases and water-bodies in Anopheles sinensis dominated areas of Huang-Huai plain, China. Parasit Vectors 5: 106.
    [Google Scholar]
  13. Wardrop NA, Barnett AG, Atkinson JA, Clements AC, 2013. Plasmodium vivax malaria incidence over time and its association with temperature and rainfall in four counties of Yunnan province, China. Malar J 12: 452.
    [Google Scholar]
  14. Bi Y, Yu W, Hu W, Lin H, Guo Y, Zhou XN, Tong S, 2013. Impact of climate variability on Plasmodium vivax and Plasmodium falciparum malaria in Yunnan province, China. Parasit Vectors 6: 357.
    [Google Scholar]
  15. Saavedra MA, Porcasi X, Scavuzzo CM, Correa MM, 2018. Downscaling incidence risk mapping for a Colombian malaria endemic region. Trop Med Int Health 23: 11011109.
    [Google Scholar]
  16. Yankson R, Anto EA, Chipeta MG, 2019. Geostatistical analysis and mapping of malaria risk in children under 5 using point-referenced prevalence data in Ghana. Malar J 18: 67.
    [Google Scholar]
  17. Thway AM, Rotejanaprasert C, Sattabongkot J, Lawawirojwong S, Thi A, Hlaing TM, Soe TM, Kaewkungwal J, 2018. Bayesian spatial analysis of malaria infection along an international border: Hlaingbwe township in Myanmar and Tha-Song-Yang district in Thailand. Malar J 17: 428.
    [Google Scholar]
  18. Tavana M, Sodenkamp MA, 2010. A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy space centre. J Oper Res Soc 61: 14591470.
    [Google Scholar]
  19. Dehe B, Bamford D, Bamford J, 2011. An Application of a MCDA Model for Healthcare Site Selection. 22nd Annual Production and Operations Management Society (POMS) Conference. April 29th–May 2nd 2011, Reno, NV.
    [Google Scholar]
  20. Joshi MM, Shahapure SS, 2017. Study on use of spatial multi-criteria analysis in decision making. Int J Eng Technol Sci Res 4: 982987.
    [Google Scholar]
  21. Gigovic´L, Drobnjak S, Pamuc D, 2019. The application of the hybrid GIS spatial multi-criteria decision analysis best–worst methodology for landslide susceptibility mapping. Int J Geo-inf 8: 79.
    [Google Scholar]
  22. Marsh K, Thokala P, Youngkong S, Chalkidou K, 2018. Incorporating MCDA into HTA: challenges and potential solutions, with a focus on lower income settings. Cost Eff Resour Allocation 16 (Suppl 1): 43.
    [Google Scholar]
  23. Elsheikh RFA, Ouerghi S, Elhag AR, 2015. Flood risk map based on GIS, and multi criteria techniques (case study Terengganu Malaysia). J Geogr Inf Syst 7: 348357.
    [Google Scholar]
  24. Cox R, Sanchez J, Revie CW, 2013. Multi-criteria decision analysis tools for prioritizing emerging or re-emerging infectious diseases associated with climate change in Canada. PLoS One 8: e68338.
    [Google Scholar]
  25. Paul MC, Goutard FL, Roulieau F, Holl D, Thanapongtharm W, Roger FL, Tran A, 2016. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia. Sci Rep 6: 31096.
    [Google Scholar]
  26. Alimi TO, Fuller DO, Herrera SV, Arevalo-Herrera M, Quinones ML, Stoler JB, Beier JC, 2016. A multi-criteria decision analysis approach to assessing malaria risk in northern South America. BMC Public Health 16: 221.
    [Google Scholar]
  27. Wondim YK, Alemayehu EB, Abebe WB, 2017. Malaria hazard and risk mapping using GIS based spatial multicriteria evaluation technique (SMCET) in Tekeze Basin Development Corridor, Amhara region, Ethiopia. J Environ Earth Sci 7: 7687.
    [Google Scholar]
  28. Eniyew S, 2018. Modelling of malaria hotspot sites using geospatial technology in the north-western highlands of Ethiopia. Int J Mosq Res 5: 5970.
    [Google Scholar]
  29. Kumi-Boateng B, Stemn E, Mireku-Gyimah D, 2015. Modelling of malaria risk areas in Ghana by using environmental and anthropogenic variables –A spatial multi-criteria approach. GMJ 5: 110.
    [Google Scholar]
  30. Kifle MM, Teklemariam TT, Teweldeberhan AM, Tesfamariam EH, Andegiorgish AK, Kidane EA, 2019. Malaria risk stratification and modeling the effect of rain fall on malaria incidence in Eritrea. J Environ Public Health 2019: 7314129.
    [Google Scholar]
  31. Akinbobola A, Ikiroma IA, 2018. Determining malaria hotspot using climatic variables and geospatial technique in Central Urban area of Ibadan, Southwest, Nigeria. J Climatol Weather Forecast 6: S1.
    [Google Scholar]
  32. Ferrao JL, Niquisse S, Mendes JM, Painho M, 2018. Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Int J Environ Res Public Health 15: E795.
    [Google Scholar]
  33. Sturrock HW, Bennett AF, Midekisa A, Gosling RD, Gething PW, Greenhouse B, 2016. Mapping malaria risk in low transmission settings: challenges and opportunities. Trends Parasitol 32: 635645.
    [Google Scholar]
  34. Craig MH, Kleinschmidt I, Le Sueur D, Sharp BL, 2004. Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: part II. The impact of non-climatic factors. Trop Med Int Health 9: 12581266.
    [Google Scholar]
  35. Mazumdar S, 2011. Prevalence, risk factors and treatment-seeking behaviour for malaria: the results of a case study from the Terai region of West Bengal, India. Ann Trop Med Parasitol 105: 197208.
    [Google Scholar]
  36. Haile M, Lemma H, Weldu Y, 2017. Population movement as a risk factor for malaria infection in high-altitude villages of Tahtay-Maychew district, Tigray, northern Ethiopia: a case-control study. Am J Trop Med Hyg 97: 726732.
    [Google Scholar]
  37. Ricotta EE, Frese SA, Choobwe C, Louis TA, Shiff CJ, 2014. Evaluating local vegetation cover as a risk factor for malaria transmission: a new analytical approach using image. Malar J 13: 94.
    [Google Scholar]
  38. Reiter P, 2001. Climate change and mosquito-borne disease. Environ Health Perspect 109 (Suppl 1): 141161.
    [Google Scholar]
  39. Githeko AK, Lindsay SW, Confalonieri UE, Patz JA, 2000. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 78: 11361147.
    [Google Scholar]
  40. Stevens KB, Gilbert M, Pfeiffer DU, 2013. Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: a spatial multicriteria decision analysis approach. Spat Spat Epidemiol 4: 114.
    [Google Scholar]
  41. Fuller D, Troyo A, Alimi T, Beier J, 2014. Participatory risk mapping of malaria vector exposure in northern South America using environmental and population data. Appl Geogr 48: 17.
    [Google Scholar]
  42. Saaty TL, 1994. Highlights and critical points in the theory and application of the analytic hierarchy process. Eur J Oper Res 74: 426447.
    [Google Scholar]
  43. Malczewski J, 2000. On the use of weighted linear combination method in GIS: common and best practice approaches. Trans GIS 4: 522.
    [Google Scholar]
  44. Fuller D, Meijaard E, Christy L, Jessup T, 2010. Mapping threats to biodiversity within ecoregions: an example from East Kalimantan, Indonesia. Appl Geo 30: 416425.
    [Google Scholar]
  45. Swets JA, 1988. Measuring the accuracy of diagnostic systems. Science 240: 12851293.
    [Google Scholar]
  46. Manel S, Williams HC, Ormerod SJ, 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38: 921931.
    [Google Scholar]
  47. Mazher MH, Iqbal J, Mahboob MA, Atif I, 2018. Modeling spatio-temporal malaria risk using remote sensing and environmental factors. Iran J Public Health 47: 12811291.
    [Google Scholar]
  48. Maboso MLH, Vounaraou P, Midzi S, Slva JD, Smith T, 2006. Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe. Int J Health Geogr 5: 20.
    [Google Scholar]
  49. Hanafi-Bojda AA et al., 2012. Spatial analysis and mapping of malaria risk in an endemic area, south of Iran: a GIS based decision making for planning of control. Acta Trop 122: 132137.
    [Google Scholar]
  50. Stefani A et al., 2013. Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data. Malar J 12: 192.
    [Google Scholar]
  51. Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V, 2010. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr 9: 54.
    [Google Scholar]
  52. Curran PJ, Atkinson PM, Foody GM, Milton EJ, 2000. Linking remote sensing, land cover and disease. Adv Parasitol 47: 3780.
    [Google Scholar]
  53. Ostfeld RS, Glass GE, Keesing F, 2005. Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20: 328336.
    [Google Scholar]
  54. Barbieri AF, Sawyer DO, Soares BS, 2005. Population and land use effects on malaria prevalence in the southern Brazilian Amazon. Hum Ecol 33: 847874.
    [Google Scholar]
  55. De Castro MC, Monte-Mór RL, Sawyer DO, Singer BH, 2006. Malaria risk on the Amazon frontier. Proc Natl Acad Sci USA 103: 24522457.
    [Google Scholar]
  56. Xu X, Zhou G, Wang Y, Hu Y, Ruan Y, Fan Q, Yang Z, Yan G, Cui L, 2016. Microgeographic heterogeneity of border malaria during elimination phase, Yunnan province, China, 2011–2013. Emerg Infect Dis 22: 13631370.
    [Google Scholar]
  57. Hui FM et al., 2009. Spatio-temporal distribution of malaria in Yunnan province, China. Am J Trop Med Hyg 81: 503509.
    [Google Scholar]
  58. Ssempiira J, Kasirye I, Kissa J, Nambuusi B, Mukooyo E, Opigo J, Makumbi F, Kasasa S, Vounatsou P, 2018. Measuring health facility readiness and its effects on severe malaria outcomes in Uganda. Sci Rep 8: 17928.
    [Google Scholar]
  59. Feikin DR, Nguyen LM, Adazu K, Ombok M, Audi A, Slutsker L, Lindblade AK, 2009. The impact of distance of residence from a peripheral health facility on pediatric health utilisation in rural western Kenya. Trop Med Int Health 14: 5461.
    [Google Scholar]
  60. Zhang SS, Feng J, Zhang L, Ren X, Geoffroy E, Manguin S, Frutos R, Zhou SS, 2019. Imported malaria cases in former endemic and non-malaria endemic areas in China: are there differences in case profile and time to response? Infect Dis Poverty 8: 61.
    [Google Scholar]
  61. Lai S et al., 2019. Changing epidemiology and challenges of malaria in China towards elimination. Malar J 18: 107.
    [Google Scholar]
  62. Chen TM et al., 2018. Mobile population dynamics and malaria vulnerability: a modelling study in the China-Myanmar border region of Yunnan province, China. Infect Dis Poverty 7: 36.
    [Google Scholar]
  63. Feng J, Tu H, Zhang L, Zhang S, Jiang S, Xia Z, Zhou S, 2018. Mapping transmission foci to eliminate malaria in the People’s Republic of China, 2010–2015: a retrospective analysis. BMC Infect Dis 18: 115.
    [Google Scholar]
  64. Drakeley CJ, Carneiro I, Reyburn H, Malima R, Lusingu JP, Cox J, Theander TG, Nkya WM, Lemnge MM, Riley EM, 2005. Altitude-dependent and - independent variations in Plasmodium falciparum prevalence in northeastern Tanzania. J Infect Dis 191: 15891598.
    [Google Scholar]
  65. Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML, 2008. Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malar J 7: 40.
    [Google Scholar]
  66. Ovadje L, Nriagu J, 2011. Malaria as an environmental disease. Encyclopedia of Environmental Health. Burlington, VT: Elsevier, 558567. Available at: https://doi.org/10.1016/B978-0-444-52272-6.00735-2. Accessed June 12, 2020.
    [Google Scholar]
  67. Myers WP, Myers AP, Cox-Singh J, Lau HC, Mokuai B, Malley R, 2009. Microgeographic risk factors for malarial infection. Malar J 8: 27.
    [Google Scholar]
  68. Chen T et al., 2017. Receptivity to malaria in the China–Myanmar border in Yingjiang county, Yunnan province, China. Malar J 16; 478.
    [Google Scholar]
  69. Dong X, 2000. The malaria vectors and their ecology in Yunnan province. Chin J Parasitic Dis Control 13: 144147.
    [Google Scholar]
  70. Dong X, 1993. The Mosquito Fauna of Yunnan Province. Kunming, China: Yunnan Science and Technology Press.
    [Google Scholar]
  71. Dlamini SN, Franke J, Vounatsou P, 2015. Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data. Geospat Health 10: 302.
    [Google Scholar]
  72. Oesterholt MJ, Bousema JT, Mwerinde OK, Harris C, Lushino P, Masokoto A, Mwerinde H, Mosha FW, Drakeley CJ, 2006. Spatial and temporal variation in malaria transmission in a low endemicity area in northern Tanzania. Malar J 5: 98.
    [Google Scholar]
  73. Zhou G, Munga S, Minakawa N, Githeko AK, Yan G, 2007. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg 77, 2935.
    [Google Scholar]
  74. Hajison PL, Feresu SA, Mwakikunga BW, 2018. Malaria in children under-five: a comparison of risk factors in lakeshore and highland areas, Zomba district, Malawi. PLoS ONE 13: e0207207.
    [Google Scholar]
  75. Mbouna AD, Tompkins AM, Lenouo A, Asare EO, Yamba EI, Tchawoua C, 2019. Modelled and observed mean and seasonal relationships between climate, population density and malaria indicators in Cameroon. Malar J 18: 359.
    [Google Scholar]
  76. Spitzen JJ, 2013. Flight Behaviour of Hungry Malaria Mosquitoes Analysed. Available at: https://www.wur.nl/en/show/Flight-behaviour-of-hungry-malaria-mosquitoes-analysed.htm. Accessed April 25, 2017.
    [Google Scholar]
  77. Ferrao JL, Mendes JM, Painho M, Joao SZ, 2016. Spatio-temporal variation and socio-demographic characters of malaria in Chimoio municipality, Mozambique. Malar J 15: 329.
    [Google Scholar]
  78. Erhart A et al., 2005. Epidemiology of forest malaria in central Vietnam: a large scale cross-sectional survey. Malar J 4: 58.
    [Google Scholar]
  79. Delacollette C et al., 2009. Malaria trends and challenges in the greater Mekong subregion. Malaria trends and challenges in the greater Mekong subregion. Southeast Asian J Trop Med Public Health 40: 674691.
    [Google Scholar]
  80. Saita S, Silawan T, Parker DM, Sriwichai P, Phuanukoonnon S, Sudathip P, Maude RJ, White LJ, Pan-ngum W, 2019. Spatial heterogeneity and temporal trends in malaria on the Thai–Myanmar border (2012–2017): a retrospective observational study. Trop Med Infect Dis 4: 62.
    [Google Scholar]
  81. Crawshaw AF, Maung TM, Shafique M, Sint N, Nicholas S, Li MS, Roca-Feltrer A, Hii J, 2017. Acceptability of insecticide-treated clothing for malaria prevention among migrant rubber tappers in Myanmar: a cluster-randomized non-inferiority crossover trial. Malar J 16: 92.
    [Google Scholar]
  82. Parihar RS, Bal PK, Kumar V, Mishra SK, Sahany S, Salunke P, Dash SK, Dhiman RC, 2019. Numerical modeling of the dynamics of malaria transmission in a highly endemic region of India. Sci Rep 9: 11903.
    [Google Scholar]
  83. Walsh JF, Molyneux DH, Birley MH, 1993. Deforestation: effects on vector-borne disease. Parasitology 106 (Suppl): S55S75.
    [Google Scholar]
  84. Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, Pinedo-Cancino V, Patz JA, 2006. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74: 311.
    [Google Scholar]
  85. Vittor AY et al., 2009. Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg 81: 512.
    [Google Scholar]
  86. Conn JE, Wilkerson RC, Segura MNO, De Souza RTL, Schlichting CD, Wirtz RA, Póvoa MM, 2002. Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. Am J Trop Med Hyg 66: 1822.
    [Google Scholar]
  87. Xu JW, Liu H, Zhang Y, Guo XR, Wang JZ, 2015. Risk factors for border malaria in a malaria elimination setting: a retrospective case-control study in Yunnan, China. Am J Trop Med Hyg 92: 546551.
    [Google Scholar]
  88. Khine SK, Kyaw NTT, Thekkur P, Lin Z, Thi A, 2019. Malaria hot spot along the foothills of Rakhine state, Myanmar: geospatial distribution of malaria cases in townships targeted for malaria elimination. Trop Med Health 47: 60.
    [Google Scholar]
  89. Hillman AL, Yu J, Abbott MB, Cooke CA, Bain DJ, Steinman BA, 2014. Rapid environmental change during dynastic transitions in Yunnan province, China. Quat Sci Rev 98: 2432.
    [Google Scholar]
  90. Webb EL, Jachowski NRA, Phelps J, Friess DA, Than MM, Ziegler AD, 2014. Deforestation in the Ayeyarwady delta and the conservation implications of an internationally-engaged Myanmar. Glob Environ Change 24: 321333.
    [Google Scholar]
  91. Wang X, Zhou G, Zhong D, Wang X, Wang Y, Yang Z, Cui L, Yan G, 2016. Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae. Parasit Vectors 9: 323.
    [Google Scholar]
  92. Zhong D, Wang X, Xu T, Zhou G, Wang Y, Lee MC, Hartsel JA, Cui L, Zheng B, Yan G, 2016. Effects of microclimate condition changes due to land use and land cover changes on the survivorship of malaria vectors in China-Myanmar border region. PLoS One 11: e0155301.
    [Google Scholar]
  93. Adeola AM, Botai OJ, Olwoch JM, Rautenbach CJ, Adisa OM, Taiwo OJ, Kalumba AM, 2016. Environmental factors and population tat of malaria in Nkomazi municipality, South Africa. Trop Med Int Health 21: 675686.
    [Google Scholar]
  94. Kibret S, Glenn Wilson G, Ryder D, Tekie H, Petros B, 2019. Environmental and meteorological factors linked to malaria transmission around large dams at three ecological settings in Ethiopia. Malar J 18: 54.
    [Google Scholar]
  95. Qi Q, Guerra CA, Moyes CL, Elyazar IR, Gething PW, Hay SI, Tatem AJ, 2012. The effects of urbanization on global Plasmodium vivax malaria transmission. Malar J 11: 403.
    [Google Scholar]
  96. Robert V, Macintyre K, Keating J, Trape J-F, Duchemin J-B, Warren M, Beier JC, 2003. Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg 68: 169176.
    [Google Scholar]
  97. Donnelly M et al., 2005. Malaria and urbanization in sub-Saharan Africa. Malar J 4: 12.
    [Google Scholar]
  98. Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW, 2005. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Micro 3: 8190.
    [Google Scholar]
  99. Kabaria CW, Gilbert M, Noor AM, Snow RW, Linard C, 2017. The impact of urbanization and population density on childhood Plasmodium falciparum parasite prevalence rates in Africa. Malar J 16: 49.
    [Google Scholar]
  100. Solano-Villarreal E et al., 2019. Malaria risk assessment and mapping using satellite imagery and boosted regression trees in the Peruvian Amazon. Sci Rep 9: 15173.
    [Google Scholar]
  101. O’Donnell O, 2017. Access to healthcare in developing countries: breaking down demand side barriers. Cad Saúde Pública, 23: 12.
    [Google Scholar]
  102. Parselia E, Kontoes C, Tsouni A, Hadjichristodoulou C, Kioutsioukis J, Magiorkinis G, Stilianakis NI, 2019. Satellite earth observation data in epidemiological modeling of malaria, dengue and west nile virus: a scoping review. Remote Sensing 11: 1862.
    [Google Scholar]
  103. Canelas T, Castillo-Salgado C, Ribeiro H, 2016. Systematized literature review on spatial analysis of environmental risk factors of malaria transmission. Adv Infect Dis 6: 5262.
    [Google Scholar]
  104. Amratia P, Psychas P, Abuaku B, Ahorlu C, Millar J, Oppong S, Koram K, Valle D, 2019. Characterizing local-scale heterogeneity of malaria risk: a case study in Bunkpurugu-Yunyoo district in northern Ghana. Malar J 18: 81.
    [Google Scholar]
  105. Platt A, Obala AA, MacIntyre C, Otsyula B, O’ Meara WP, 2018. Dynamic malaria hotspots in an open cohort in western Kenya. Sci Rep 8: 647.
    [Google Scholar]
  106. Feng J, Liu J, Feng X, Zhang L, Xiao H, Xia Z, 2016. Towards malaria elimination: monitoring and evaluation of the “1-3-7” approach at the China-Myanmar border. Am J Trop Med Hyg 95: 806810.
    [Google Scholar]
  107. Wang X, Cao J, Li D, Guo D, Zhang C, Wang X, Li D, Zhao Q, Huang X, Zhang W, 2019. Management of imported malaria cases and healthcare institutions in central China, 2012–2017: application of decision tree analysis Malar J 18: 429.
    [Google Scholar]
  108. Cai-Qun C, Gui-Sheng D, Wei-Ming W, 2018. Epidemic situation and diagnosis and treatment of severe falciparum malaria in Nantong city [article in Chinese]. J Schistosomiasis Contr 30: 555558.
    [Google Scholar]
  109. Zhang T, Xu X, Jiang J, Yu C, Tian C, Xie Q, Li W, 2019. Risk factors of severe imported malaria in Anhui province, China. Acta Trop 197: 104934.
    [Google Scholar]
  110. Chikodzi D, 2013. Spatial modelling of malaria risk zones using environmental, anthropogenic variables and geogra-phical information systems techniques. J Geomatics Geosci 1: 814.
    [Google Scholar]
  111. Homan T et al., 2016. Spatially variable risk factors for malaria in a geographically heterogeneous landscape, western Kenya: an explorative study. Malar J 15: 1.
    [Google Scholar]
  112. Kelly C, Hulme C, Farragher T, Clarke G, 2016. Are differences in travel time or distance to healthcare for adults in global north countries associated with an impact on health outcomes? A systematic review. BMJ Open 6: e01305.
    [Google Scholar]
  113. Okunlola OA, Oyeyemi OT, 2019. Spatio-temporal analysis of association between incidence of malaria and environmental predictors of malaria transmission in Nigeria. Sci Rep 9: 17500.
    [Google Scholar]
  114. Lu G, Liu Y, Wang J, Li X, Liu X, Beiersmann C, Feng Y, Cao J, Muller O, 2018. Malaria training for community health workers in the setting of elimination: a qualitative study from China. Malar J 17: 95.
    [Google Scholar]
  115. Lu G, Liu Y, Beiersmann C, Feng Y, Cao J, Muller O, 2016. Challenges in and lessons learned during the implementation of the 1-3-7 malaria surveillance and response strategy in China: a qualitative study. Infect Dis Poverty 5: 94.
    [Google Scholar]
  116. Li X et al., 2017. The primary health-care system in China. Lancet 390: 25842594.
    [Google Scholar]
  117. Duan YZ, Li SG, Kang XH, Yin SQ, XD S, 2013. A point-like outbreak caused by secondary transmission from an imported malaria vivax case. Int J Med Parasit Dis 40: 5759.
    [Google Scholar]
  118. Nweneka CV, 2016. Proximity to healthcare facility reduces the risk of co-morbidities and severe illness in children with acute malaria in rural African communities. Rev J Hosp Clin Pharm 2: 4653.
    [Google Scholar]
  119. Sturrock HJW, Roberts KW, Wegbreit J, Ohrt C, Gosling RD, 2015. Tackling imported malaria: an elimination endgame. Am J Trop Med Hyg 93: 139144.
    [Google Scholar]
  120. Tatem AJ, Jia P, Ordanovich D, Falkner M, Huang Z, Howes R, Hay SI, Gething PW, Smith DL, 2017. The geography of imported malaria to non-endemic countries: a meta-analysis of nationally reported statistics. Lancet Infect Dis 17: 98107.
    [Google Scholar]
  121. Lai S et al., 2016. Plasmodium falciparum malaria importation from Africa to China and its mortality: an analysis of driving factors. Sci Rep 6: 39524.
    [Google Scholar]
  122. Wang L, Zou Y, Zhu X, Bottazzi ME, Hotez PJ, Zhan B, 2019. China’s shifting neglected parasitic infections in an era of economic reform, urbanization, disease control, and the Belt and Road Initiative. PLoS Negl Trop Dis 13: e0006946.
    [Google Scholar]
  123. Zhang L, Feng J, Zhang S, Jiang B, Xia Z, Zhou S, 2017. Malaria situation in the people’ s Republic of China in 2016 [article in Chinese]. Chin J Parasitol Parasite Dis 5: 515519.
    [Google Scholar]
  124. Li S, Yin S, Wang J, Li X, Feng J, 2016. Shifting from control to elimination: analysis of malaria epidemiological characteristics in Tengchong county around China-Myanmar border, 2005–2014. Malar J 15: 45.
    [Google Scholar]
  125. Xu JW et al., 2016. Malaria control along China-Myanmar border during 2007–2013: an integrated impact evaluation. Infect Dis Poverty 5: 75.
    [Google Scholar]
  126. Cotter C, Sturrock HJ, Hsiang MS, Liu J, Phillips AA, Hwang J, Gueye CS, Fullman N, Gosling RD, Feachem RG, 2013. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet 382: 900911.
    [Google Scholar]
  127. Wang D et al., 2015. Transmission risk from imported Plasmodium vivax malaria in the China-Myanmar border region. Emerg Infect Dis 21: 18611864.
    [Google Scholar]
  128. Van Der Hoek W, Konradsen F, Amerasinghe PH, Perera D, Piyaratne MK, Amerasinghe FP, 2003. Towards a risk map of malaria for Sri Lanka: the importance of house location relative to vector breeding sites. Int J Epidemiol 32: 280285.
    [Google Scholar]
  129. Shi Q, Cheng P, Zhang CX, Guo X, Liu L, Wang H, Kou J, Huang X, Wang H, Gong M, 2017. Epidemiological analysis of 133 malaria cases in Shanxian county, Shandong province, China. Asian Pac J Trop Med 10: 802807.
    [Google Scholar]
  130. Liu Q et al., 2012. Dispersal range of Anopheles sinensis in yongcheng city, China by mark-release-recapture methods. PLoS One 7: e51209.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0854
Loading
/content/journals/10.4269/ajtmh.19-0854
Loading

Data & Media loading...

  • Received : 15 Nov 2019
  • Accepted : 13 May 2020
  • Published online : 29 Jun 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error