1921
Volume 103, Issue 1_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), a program focusing on schistosomiasis control in sub-Saharan Africa between 2008 and 2019, investigated ways to improve coverage and efficacy of ongoing chemotherapy programs and concluded that because of continued transmission, mass distribution of praziquantel cannot eliminate the disease without complementary control activities. Schistosomiasis Consortium for Operational Research and Evaluation’s activities comprised large-scale, multicountry field studies comparing various mass drug administration strategies and some specific research avenues, such as assessment of high-sensitivity diagnostics, identification of hotspots, quantification of the role of the snail host, predictive modeling, and changes in schistosome population genetics under drug pressure. The discoveries made and the insights gained regarding cost-effective strategies for delivering preventive chemotherapy should assist policy makers to develop guidelines for the control and ultimate elimination of schistosomiasis.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0838
2020-05-12
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/1_Suppl/tpmd190838.html?itemId=/content/journals/10.4269/ajtmh.19-0838&mimeType=html&fmt=ahah

References

  1. Bilharz TM, 1853. Fernere Beobachtungen über das die Pfortader des Menschen bewohnende Distomum Haematobium und sein Verhältnis zu gewissen pathologischen Bildungen, von Dr. Th. Bilharz in Cairo (aus brieflichen Mittheilungen an Professor v. Siebold vom 29 März 1852). Zeitschrift für Wissenschaftliche Zoologie 4: 7276. (English translation in: Benjamin Harrison Kean (1912-1993), Kenneth E. Mott and Adair J. Russell. Tropical Medicine and Parasitology: Classic Investigations. 1 volume in 2. Ithaca, London: Cornell University Press, 1978. Also 1984 in Rev Inf Dis (Chicago) 4: 727–32.
    [Google Scholar]
  2. Bilharz T, 1856. Distomum haematobium und sein Verhältniss zu gewissen pathologischen Veränderungen der menschlichen Harnorgane. Wien Med Wochenschr 6: 4965.
    [Google Scholar]
  3. Kaye B, Woolhouse NM, 1976. The metabolism of oxamniquine–a new schistosomicide. Ann Trop Med Parasitol 70: 323328.
    [Google Scholar]
  4. Cerf J, Lebrun A, Dierichx J. 1962. A new approach to helminthiasis control: the use of an organophosphorus compound. Am J Trop Med Hyg 11: 514517.
    [Google Scholar]
  5. Leiper RT, 1916. On the relation between the terminal spined and lateral-spined eggs of bilharzia. Br Med J 1: 411.
    [Google Scholar]
  6. Maki J, Mikami M, Maruyama S, Sakagami H, Kuwada M, 2001. Discovery of the adult Schistosoma japonicum, a causative agent of schistosomiasis in the Katayama area of hiroshima prefecture [article in Japanese]. Yakushigaku Zasshi 36: 3235.
    [Google Scholar]
  7. Katsurada F, 1904. Determination of the cause of a new parasite disease seen in Yamanashi, Hiroshima, Saga and other prefectures [article in Japanese]. Tokyo Iji Shinshi 1371: 1332.
    [Google Scholar]
  8. Sambon LW, 1907. New or little known African entozoa. J Trop Med Hyg 10:117.
    [Google Scholar]
  9. Bergguist R, Kloos H, Adugna A, 2017. Schistosomiasis: paleopathological perspectives and historical notes. pp 8-33 in Schistosoma: biology, pathology and control. B. Jamieson, ed. Boca Raton, FL: CRC Press.
  10. Jordan P, 2000. From katayama to the Dakhla Oasis: the beginning of epidemiology and control of bilharzia. Acta Trop 77: 940.
    [Google Scholar]
  11. Fenwick A, 2017. Schistosomiasis research and control since the retirement of Sir Patrick Manson in 1914. Trans R Soc Trop Med Hyg 111: 191198.
    [Google Scholar]
  12. Seubert J, Pohlke R, Loebich F, 1977. Synthesis and properties of praziquantel, a novel broad spectrum anthelmintic with excellent activity against schistosomes and cestodes. Experientia 33: 10361037.
    [Google Scholar]
  13. Davis A, Wegner DH, 1979. Multicentre trials of praziquantel in human schistosomiasis: design and techniques. Bull World Health Organ 57: 767771.
    [Google Scholar]
  14. World Health Organization, 1985. The Control of Schistosomiasis. Report of a WHO Expert Committee, Technical Report Series No 728. Geneva, Switzerland, WHO, 113.
    [Google Scholar]
  15. World Health Organization, 2012. Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases – A Roadmap for Implementation. Geneva, Switzerland: WHO, 37. Available at https://unitingtocombatntds.org/wp-content/uploads/2017/11/who_ntd_roadmap.pdf. Accessed October 20, 2019.
    [Google Scholar]
  16. Uniting to Combat NTDs Coalition of Private and Public Sector Organizations, 2019. The London Declaration on Neglected Tropical Diseases. Available at https://unitingtocombatntds.org/london-declaration-neglected-tropical-diseases/. Accessed October 20, 2019.
    [Google Scholar]
  17. Tanaka H, Tsuji M, 1997. From discovery to eradication of schistosomiasis in Japan: 1847–1996. Int J Parasitol 27: 14651480.
    [Google Scholar]
  18. Alsaqabi SM, Lotfy WM, 2014. Praziquantel: a review. J Veterinar Sci Technol 5: 200.
    [Google Scholar]
  19. Lofty WL, 2009. Human schistosomiasis in Egypt: historical review, assessment of the current picture and prediction of the future trends. J Med Res Inst 30: 17.
    [Google Scholar]
  20. Utzinger J, Zhou XN, Chen MG, Bergquist R, 2005. Conquering schistosomiasis in China: the long march. Acta Trop 96: 6996.
    [Google Scholar]
  21. Collins C, Xu J, Tang S, 2012. Schistosomiasis control and the health system in P.R. China. Infect Dis Poverty 1: 8.
    [Google Scholar]
  22. Sarvel AK, Oliveira AA, Silva AR, Lima AC, Katz N, 2011. Evaluation of a 25-year-program for the control of schistosomiasis mansoni in an endemic area in Brazil. PLoS Negl Trop Dis 5: e990.
    [Google Scholar]
  23. Reich MR, Govindaraj R, Dumbaugh K, Yang B-M, Brinkmann A, El-Sahart S, 1998. International Strategies for Tropical Disease Treatments–Experiences with Praziquantel–EDM Research Series No. 026. Reich MR ed. The Action Programme on Essential Drugs and the Division of Control of Tropical Diseases, World Health Organization (WHO/DAP/CTD/98.5), 113.
    [Google Scholar]
  24. Korte R, Schmidt-Ehry B, Kielmann AA, Brinkmann UK, 1986. Cost and effectiveness of different approaches to schistosomiasis control in Africa. Trop Med Parasitol 37: 149152.
    [Google Scholar]
  25. Brinkmann UK, Werler C, Traoré M, Korte R, 1988. The national schistosomiasis control programme in Mali, objectives, organization, results. Trop Med Parasitol 39: 157161.
    [Google Scholar]
  26. Clements ACA, Bosqué-Oliva E, Sacko M, Landouré A, Dembélé R, Traoré M, Coulibaly G, Gabrielli AF, Fenwick A, Brooker S, 2009. A comparative study of the spatial distribution of schistosomiasis in Mali in 1984–1989 and 2004–2006. PLoS Negl Trop Dis 3: e431.
    [Google Scholar]
  27. El Khoby T, Galal N, Fenwick A, 1998. The USAID/government of Egypt’s schistosomiasis research project (SRP). Parasitol Today 14: 9296.
    [Google Scholar]
  28. Fenwick A et al., 2009. The schistosomiasis control initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136: 17191730.
    [Google Scholar]
  29. French MD et al., 2015. Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with schistosomiasis control initiative-assisted programmes. Parasit Vectors 8: 558.
    [Google Scholar]
  30. Utzinger J, Brattig NW, Kristensen TK, 2013. Schistosomiasis research in Africa: how the CONTRAST alliance made it happen. Acta Trop 128: 182195.
    [Google Scholar]
  31. Colley DJ, Jacobson JA, Binder S, 2020. Schistosomiasis Consortium for Operational Research and Evaluation (SCORE): its foundations, development, and evolution. Am J Trop Med Hyg 103 (Suppl 1): 513.
    [Google Scholar]
  32. Colley DG et al., 2020. Contributions of the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) to Schistosomiasis control and elimination: key findings and messages for future goals, thresholds, and operational research. Am J Trop Med Hyg 103 (Suppl 1): 125134.
    [Google Scholar]
  33. King CH et al., 2020. Impact of different mass drug administration strategies for gaining and sustaining control of Schistosoma mansoni and Schistosoma haematobium infection in Africa. Am J Trop Med Hyg 103 (Suppl 1): 1423.
    [Google Scholar]
  34. Campbell CH Jr et al., 2020. SCORE operational research on moving toward interruption of Schistosomiasis transmission. Am J Trop Med Hyg 103 (Suppl 1): 5865.
    [Google Scholar]
  35. WHO, 2019. Fact sheet on schistosomiasis, Available at https://www.who.int/news-room/fact-sheets/detail/schistosomiasis. Accessed October 15, 2019.
  36. Katz N, Chaves A, Pellegrino J, 1972. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14: 397400.
    [Google Scholar]
  37. Braun-Munzinger RA, Southgate BA, 1992. Repeatability and reproducibility of egg counts of Schistosoma haematobium in urine. Trop Med Parasitol 43: 149154.
    [Google Scholar]
  38. Meurs L, Brienen E, Mbow M, Ochola EA, Mboup S, Karanja DM, Secor WE, Polman K, van Lieshout L, 2015. Is PCR the next reference standard for the diagnosis of Schistosoma in stool? A comparison with microscopy in Senegal and Kenya. PLoS Negl Trop Dis 9: e0003959.
    [Google Scholar]
  39. Bärenbold O et al., 2018. Translating preventive chemotherapy prevalence thresholds for Schistosoma mansoni from the Kato-Katz technique into the point-of-care circulating cathodic antigen diagnostic test. PLoS Negl Trop Dis 12: e0006941.
    [Google Scholar]
  40. Clements MN et al., 2018. Latent class analysis to evaluate performance of point-of-care CCA for low-intensity Schistosoma mansoni infections in Burundi. Parasit Vectors 11: 111.
    [Google Scholar]
  41. Knopp S et al., 2015. Sensitivity and specificity of a urine circulating anodic antigen test for the diagnosis of Schistosoma haematobium in low endemic settings. PLoS Negl Trop Dis 9: e0003752.
    [Google Scholar]
  42. Corstjens PLAM et al., 2020. Circulating Anodic Antigen (CAA): a highly sensitive diagnostic biomarker to detect active Schistosoma infections—improvement and use during SCORE. Am J Trop Med Hyg 103 (Suppl 1): 5057.
    [Google Scholar]
  43. Kittur N et al., 2020. Discovering, defining, and summarizing persistent hotspots in SCORE studies. Am J Trop Med Hyg 103 (Suppl 1): 2429.
    [Google Scholar]
  44. Webster JP, Inês Neves M, Webster BL, Pennance T, Rabone M, Gouvras A, Walker M, Rollinson D, 2020. Parasite population genetic contributions to the Schistosomiasis Consortium for Operational Research and Evaluation within Sub-Saharan Africa. Am J Trop Med Hyg 103 (Suppl 1): 8091.
    [Google Scholar]
  45. King CH, Yoon N, Wang X, Lo NC, Alsallaq R, Ndeffo-Mbah M, Li E, Gurarie D, 2020. Application of Schistosomiasis Consortium for Operational Research and Evaluations study findings to refine predictive modeling of Schistosoma mansoni and Schistosoma haematobium control in Sub-Saharan Africa. Am J Trop Med Hyg 103 (Suppl 1): 97104.
    [Google Scholar]
  46. Li E, Gurarie D, Lo NC, Zhu X, King CH, 2019. Improving public health control of schistosomiasis with a modified WHO strategy: a model-based comparison study. Lancet Glob Health 7: e1414e1422.
    [Google Scholar]
  47. Allan F et al., 2020. Snail-related contributions from the Schistosomiasis Consortium for Operational Research and Evaluation program including xenomonitoring, focal mollusciciding, biological control, and modeling. Am J Trop Med Hyg 103 (Suppl 1): 6679.
    [Google Scholar]
  48. Stensgaard AS, Vounatsou P, Sengupta ME, Utzinger J, 2019. Schistosomes, snails and climate change: current trends and future expectations. Acta Trop 190: 257268.
    [Google Scholar]
  49. Hamburger J, Abbasi I, Kariuki C, Wanjala A, Mzungu E, Mungai P, Muchiri E, King CH, 2013. Evaluation of loop-mediated isothermal amplification suitable for molecular monitoring of schistosome-infected snails in field laboratories. Am J Trop Med Hyg 88: 344351.
    [Google Scholar]
  50. Qin ZQ et al., 2018. Field evaluation of a loop-mediated isothermal amplification (LAMP) platform for the detection of Schistosoma japonicum infection in Oncomelania hupensis snails. Trop Med Infect Dis 3: E124.
    [Google Scholar]
  51. Sengupta ME et al., 2019. Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proc Natl Acad Sci U S A 116: 89318940.
    [Google Scholar]
  52. Asbury C, Cline BL, Gammino VM, 2000. The Edna McConnell Clark Foundation’s Tropical Disease Research Program: A 25-Year Retrospective Review 1974–1999, pp. 121. pdf version of the book Available at https://www.emcf.org/fileadmin/media/PDFs/history/tdr_finalreport.pdf. Accessed October 20, 2019.
    [Google Scholar]
  53. Sun LP, Wang W, Hong QB, Li SZ, Liang YS, Yang HT, Zhou XN, 2017. Approaches being used in the national schistosomiasis elimination programme in China: a review. Infect Dis Poverty 6: 55.
    [Google Scholar]
  54. Madden FP, 1910. The incidence of bilharziosis in Egypt and its clinical manifestations. BMJ 2: 965969.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0838
Loading
  • Received : 08 Nov 2019
  • Accepted : 10 Nov 2019
  • Published online : 12 May 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error