1921
Volume 103, Issue 1_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) was created in 2008 to answer questions of importance to program managers working to reduce the burden of schistosomiasis in Africa. In the past, intermediate host snail monitoring and control was an important part of integrated schistosomiasis control. However, in Africa, efforts to control snails have declined dramatically over the last 30 years. A resurgence of interest in the control of snails has been prompted by the realization, backed by a World Health Assembly resolution (WHA65.21), that mass drug administration alone may be insufficient to achieve schistosomiasis elimination. SCORE has supported work on snail identification and mapping and investigated how xenomonitoring techniques can aid in the identification of infected snails and thereby identify potential transmission areas. Focal mollusciciding with niclosamide was undertaken in Zanzibar and Côte d’Ivoire as a part of elimination studies. Two studies involving biological control of snails were conducted: one explored the association of freshwater riverine prawns and snail hosts in Côte d’Ivoire and the other assessed the current distribution of , the invasive Louisiana red swamp crayfish, in Kenya and its association with snail hosts and schistosomiasis transmission. SCORE also supported modeling studies on the importance of snail control in achieving elimination and a meta-analysis of the impact of molluscicide-based snail control programs on human schistosomiasis prevalence and incidence. SCORE’s snail control studies contributed to increased investment in building capacity, and specimens collected during SCORE research deposited in the Schistosomiasis Collections at the Natural History Museum (SCAN) will provide a valuable resource for the years to come.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0831
2020-05-12
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/1_Suppl/tpmd190831.html?itemId=/content/journals/10.4269/ajtmh.19-0831&mimeType=html&fmt=ahah

References

  1. King CH, Sutherland LJ, Bertsch D, 2015. Systematic review and meta-analysis of the impact of chemical-based mollusciciding for control of Schistosoma mansoni and S. haematobium transmission. PLoS Negl Trop Dis 9: e0004290.
    [Google Scholar]
  2. Rollinson D et al., 2013. Time to set the agenda for schistosomiasis elimination. Acta Trop 128: 423440.
    [Google Scholar]
  3. Sokolow SH et al., 2015. Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proc Natl Acad Sci U S A 112: 96509655.
    [Google Scholar]
  4. Fenwick A et al., 2009. The schistosomiasis control initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136: 17191730.
    [Google Scholar]
  5. Li Z-J, Ge J, Dai J-R, Wen L-Y, Lin D-D, Madsen H, Zhou X-N, Lv S, 2016. Biology and control of snail intermediate host of Schistosoma japonicum in the People’s Republic of China. Adv Parasitol 92: 197236.
    [Google Scholar]
  6. World Health Organization, 2012. WHA65.21. Elimination of Schistosomiasis. Geneva, Switzerland: World Health Organization, 3637.
    [Google Scholar]
  7. Colley DG, 2014. Morbidity control of schistosomiasis by mass drug administration: how can we do it best and what will it take to move on to elimination? Trop Med Health 42 (Suppl 2): S25S32.
    [Google Scholar]
  8. Lo NC, Gurarie D, Yoon N, Coulibaly JT, Bendavid E, Andrews JR, King CH, 2018. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc Natl Acad Sci U S A 115: E584E591.
    [Google Scholar]
  9. King CH, Bertsch D, Andrade GM, Burnim M, Ezeamama AE, Binder S, Colley DG, 2020. The Schistosomiasis Consortium for Operational Research and Evaluation Rapid Answers Project: systematic reviews and meta-analysis to provide policy recommendations based on available evidence. Am J Trop Med Hyg 103 (Suppl 1): 9296.
    [Google Scholar]
  10. King CH, Dorner S, Kerman S, 2013. SCORE Rapid Answers Project: Adults’ Risk of Reinfection by S. haematobium in Endemic Communities in Africa (Pamphlet). Athens, GA: University of Georgia SCORE Proj, 12.
    [Google Scholar]
  11. Ivy JA, King CH, Cook JA, Colley DG, 2018. Historical perspective: revisiting the St. Lucia project, a multi-year comparison trial of schistosomiasis control strategies. PLoS Negl Trop Dis 12: e0006223.
    [Google Scholar]
  12. Vos T et al., 2017. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390: 12111259.
    [Google Scholar]
  13. Wood CL et al., 2019. Precision mapping of snail habitat provides a powerful indicator of human schistosomiasis transmission. Proc Natl Acad Sci U S A 116: 2318223191.
    [Google Scholar]
  14. Brown DS, 1994. Freshwater Snails of Africa and Their Medical Importance. 2nd edition. London, England and Bristol, PA: Taylor & Francis.
    [Google Scholar]
  15. Rollinson D, Stothard JR, Southgate VR, 2001. Interactions between intermediate snail hosts of the genus Bulinus and schistosomes of the Schistosoma haematobium group. Parasitology 123: 245260.
    [Google Scholar]
  16. Allan F, Sousa-Figueiredo JC, Emery AM, Paulo R, Mirante C, Sebastião A, Brito M, Rollinson D, 2017. Mapping freshwater snails in north-western Angola: distribution, identity and molecular diversity of medically important taxa. Parasit Vectors 10: 460.
    [Google Scholar]
  17. Kane RA, Stothard JR, Emery AM, Rollinson D, 2008. Molecular characterization of freshwater snails in the genus Bulinus: a role for barcodes? Parasit Vectors 1: 15.
    [Google Scholar]
  18. Zein-Eddine R, Djuikwo-Teukeng FF, Al-Jawhari M, Senghor B, Huyse T, Dreyfuss G, 2014. Phylogeny of seven Bulinus species originating from endemic areas in three African countries, in relation to the human blood fluke Schistosoma haematobium. BMC Evol Biol 14: 271.
    [Google Scholar]
  19. Ratnasingham S, Hebert PDN, 2007. Bold: the barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes 7: 355364.
    [Google Scholar]
  20. Standley CJ, Wade C, Stothard JR, 2011. A fresh insight into transmission of schistosomiasis: a misleading tale of Biomphalaria in Lake Victoria. PLoS One 6: e26563.
    [Google Scholar]
  21. Zhang S-M, Bu L, Laidemitt MR, Lu L, Mutuku MW, Mkoji GM, Loker ES, 2018. Complete mitochondrial and rDNA complex sequences of important vector species of Biomphalaria, obligatory hosts of the human-infecting blood fluke, Schistosoma mansoni. Sci Rep 8: 7341.
    [Google Scholar]
  22. Adema CM et al., 2017. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun 8: 15451.
    [Google Scholar]
  23. Tian-Bi Y-NT et al., 2019. Molecular characterization and distribution of Schistosoma cercariae collected from naturally infected bulinid snails in northern and central Côte d’Ivoire. Parasit Vectors 12: 117.
    [Google Scholar]
  24. Webster BL et al., 2012. Genetic diversity within schistosoma haematobium: DNA barcoding reveals two distinct groups. PLoS Negl Trop Dis 6: e1882.
    [Google Scholar]
  25. Lu L, Zhang S-M, Mutuku MW, Mkoji GM, Loker ES, 2016. Relative compatibility of Schistosoma mansoni with Biomphalaria sudanica and B. pfeifferi from Kenya as assessed by PCR amplification of the S. mansoni ND5 gene in conjunction with traditional methods. Parasit Vectors 9: 166.
    [Google Scholar]
  26. Pennance T, Ame SM, Amour AK, Suleiman KR, Allan F, Rollinson D, Webster BL, 2018. Occurrence of Schistosoma bovis on Pemba Island, Zanzibar: implications for urogenital schistosomiasis transmission monitoring. Parasitology 145: 17271731.
    [Google Scholar]
  27. Sturrock RF, Karamsadkar SJ, Ouma J, 1979. Schistosome infection rates in field snails: Schistosoma mansoni in Biomphalaria pfeifferi from Kenya. Ann Trop Med Parasitol 73: 369375.
    [Google Scholar]
  28. Hamburger J, Weil M, Anton M, Turetzky T, 1989. Schistosoma mansoni antigens recognized in Biomphalaria glabrata hemolymph by monoclonal antibodies. Am J Trop Med Hyg 40: 605612.
    [Google Scholar]
  29. Hamburger J, Hoffman O, Kariuki HC, Muchiri EM, King CH, Ouma JH, Koech DK, Sturrock RF, 2004. Large-scale, polymerase chain reaction–based surveillance of Schistosoma haematobium DNA in snails from transmission sites in coastal Kenya: a new tool for studying the dynamics of snail infection. Am J Trop Med Hyg 71: 765773.
    [Google Scholar]
  30. Hamburger J, He-Na, Abbasi I, Ramzy RM, Jourdane J, Ruppel A, 2001. Polymerase chain reaction assay based on a highly repeated sequence of Schistosoma haematobium: a potential tool for monitoring schistosome-infested water. Am J Trop Med Hyg 65: 907911.
    [Google Scholar]
  31. Hamburger J, He-Na, Xin XY, Ramzy RM, Jourdane J, Ruppel A, 1998. A polymerase chain reaction assay for detecting snails infected with bilharzia parasites (Schistosoma mansoni) from very early prepatency. Am J Trop Med Hyg 59: 872876.
    [Google Scholar]
  32. Abbasi I, Webster BL, King CH, Rollinson D, Hamburger J, 2017. The substructure of three repetitive DNA regions of Schistosoma haematobium group species as a potential marker for species recognition and interbreeding detection. Parasit Vectors 10: 364.
    [Google Scholar]
  33. Abbasi I, King CH, Muchiri EM, Hamburger J, 2010. Detection of Schistosoma mansoni and Schistosoma haematobium DNA by loop-mediated isothermal amplification: identification of infected snails from early prepatency. Am J Trop Med Hyg 83: 427432.
    [Google Scholar]
  34. Hamburger J, Abbasi I, Kariuki C, Wanjala A, Mzungu E, Mungai P, Muchiri E, King CH, 2013. Evaluation of loop-mediated isothermal amplification suitable for molecular monitoring of schistosome-infected snails in field laboratories. Am J Trop Med Hyg 88: 344351.
    [Google Scholar]
  35. Allan F, Dunn AM, Emery AM, Stothard JR, Johnston DA, Kane RA, Khamis AN, Mohammed KA, Rollinson D, 2013. Use of sentinel snails for the detection of Schistosoma haematobium transmission on Zanzibar and observations on transmission patterns. Acta Trop 128: 234240.
    [Google Scholar]
  36. Colley DG, Jacobson JA, Binder S, 2020. Schistosomiasis Consortium for Operational Research and Evaluation (SCORE): its foundations, development, and evolution. Am J Trop Med Hyg 103 (Suppl 1): 513.
    [Google Scholar]
  37. Emery AM, Allan FE, Rabone ME, Rollinson D, 2012. Schistosomiasis collection at NHM (SCAN). Parasit Vectors 5: 185.
    [Google Scholar]
  38. King CH et al., 2020. Impact of different mass drug administration strategies for gaining and sustaining control of Schistosoma mansoni and Schistosoma haematobium infection in Africa. Am J Trop Med Hyg 103 (Suppl 1): 1423.
    [Google Scholar]
  39. Rabone M, Wiethase JH, Allan F, Gouvras AN, Pennance T, Hamidou AA, Webster BL, Labbo R, Emery AM, Garba AD, Rollinson D, 2019. Freshwater snails of biomedical importance in the Niger River Valley: evidence of temporal and spatial patterns in abundance, distribution and infection with Schistosoma spp. Parasites Vectors 12: 498.
    [Google Scholar]
  40. Gouvras AN, Allan F, Kinung’hi S, Rabone M, Emery A, Angelo T, Pennance T, Webster B, Nagai H, Rollinson D, 2017. Longitudinal survey on the distribution of Biomphalaria sudanica and B. choanomophala in Mwanza region, on the shores of Lake Victoria, Tanzania: implications for schistosomiasis transmission and control. Parasit Vectors 10: 316.
    [Google Scholar]
  41. Webster JP, Neves MI, Webster BL, Pennance T, Rabone M, Gouvras AV, Allan F, Walker M, Rollinson D, 2020. Parasite population genetic contributions to the Schistosomiasis Consortium for Operational Research and Evaluation within Sub-Saharan Africa. Am J Trop Med Hyg 103 (Suppl 1): 8091.
    [Google Scholar]
  42. Knopp S et al., 2019. Evaluation of integrated interventions layered on mass drug administration for urogenital schistosomiasis elimination: a cluster-randomised trial. Lancet Glob Health 7: e1118e1129.
    [Google Scholar]
  43. Knopp S et al., 2012. Study and implementation of urogenital schistosomiasis elimination in Zanzibar (Unguja and Pemba islands) using an integrated multidisciplinary approach. BMC Public Health 12: 930.
    [Google Scholar]
  44. Tian-Bi Y-NT et al., 2018. Interrupting seasonal transmission of Schistosoma haematobium and control of soil-transmitted helminthiasis in northern and central Côte d’Ivoire: a SCORE study protocol. BMC Public Health 18: 186.
    [Google Scholar]
  45. Diakité NR, N’Zi KG, Ouattara M, Coulibaly JT, Saric J, Yao PK, Hattendorf J, Utzinger J, N’Goran EK, 2018. Association of riverine prawns and intermediate host snails and correlation with human schistosomiasis in two river systems in south-eastern Côte d’Ivoire. Parasitology 145: 17921800.
    [Google Scholar]
  46. Mutuku MW et al., 2019. A search for snail-related answers to explain differences in response of schistosoma mansoni to praziquantel treatment among responding and persistent hotspot villages along the Kenyan shore of Lake Victoria. Am J Trop Med Hyg 101: 6577.
    [Google Scholar]
  47. Jordan P, 1985. Schistosomiasis: The St. Lucia Project. Cambridge United Kingdom: Cambridge University Press.
    [Google Scholar]
  48. World Health Organization, 2017. Field Use of Molluscicides in Schistosomiasis Control Programmes: An Operational Manual for Programme Managers. Licence: CC BY-NC-SA 3.0 IGO. Geneva, Switzerland: WHO.
    [Google Scholar]
  49. Campbell CH, Jr. et al., 2020. SCORE operational research on moving toward interruption of Schistosomiasis transmission. Am J Trop Med Hyg 103 (Suppl 1): 5865.
    [Google Scholar]
  50. Knopp S et al., 2019. A 5-year intervention study on elimination of urogenital schistosomiasis in Zanzibar: parasitological results of annual cross-sectional surveys. PLoS Negl Trop Dis 13: e0007268.
    [Google Scholar]
  51. Fürst T, Silué KD, Ouattara M, N’Goran DN, Adiossan LG, N’Guessan Y, Zouzou F, Koné S, N’Goran EK, Utzinger J, 2012. Schistosomiasis, soil-transmitted helminthiasis, and sociodemographic factors influence quality of life of adults in Côte d’Ivoire. PLoS Negl Trop Dis 6: e1855.
    [Google Scholar]
  52. Coulibaly JT, N’Gbesso YK, N’Guessan NA, Winkler MS, Utzinger J, N’Goran EK, 2013. Epidemiology of schistosomiasis in two high-risk communities of south Côte d’Ivoire with particular emphasis on pre-school–aged children. Am J Trop Med Hyg 89: 3241.
    [Google Scholar]
  53. Gray DJ, McManus DP, Li Y, Williams GM, Bergquist R, Ross AG, 2010. Schistosomiasis elimination: lessons from the past guide the future. Lancet Infect Dis 10: 733736.
    [Google Scholar]
  54. Cecchi P, Baldé S, Yapi GY, 2007. Mollusques hôtes intermédiaires de bilharzioses dans les petits barrages. Cecchi P, ed. L’eau en partage. Marseille, France: IRD Éditions, 175189.
    [Google Scholar]
  55. Sokolow SH, Wood CL, Jones IJ, Lafferty KD, Kuris AM, Hsieh MH, De Leo GA, 2018. To reduce the global burden of human schistosomiasis, use “old fashioned” snail control. Trends Parasitol 34: 2340.
    [Google Scholar]
  56. Da Costa KS, Gourène G, Tito De Morais L, van den Audenaerde DFET, 2000. Caractérisation des peuplements ichtyologiques de deux fleuves côtiers ouest-africains soumis à des aménagements hydroagricoles et hydroélectriques. Vie Milieu 50: 6577.
    [Google Scholar]
  57. Mkoji GM, Hofkin BV, Ouma JH, Kuris AM, Koech DK, Loker ES, 1995. Research on biological control of schistosome-transmitting snails in Kenya. In: A status of research on medical malacology in relation to schistosomiasis in Africa. 265274.
    [Google Scholar]
  58. Loker ES, Hofkin BV, Mkoji GM, Kihara JH, Mungai B, Koech DK, 1992. Procambarus clarkii in Kenya: does it have a role to play in the control of schistosomiasis? Aquaculture and Schistosomiasis: Proceedings of a Network Meeting Held in Manila, Philippines, August 6–10 1991. Washington, DC: National Academy Press, 272282.
    [Google Scholar]
  59. Lowery RS, Mendes AJ, 1977. Procambarus clarkii in Lake Naivasha, Kenya, and its effects on established and potential fisheries. Aquaculture 11: 111121.
    [Google Scholar]
  60. Hofkin BV, Mkoji GM, Koech DK, Loker ES, 1991. Control of schistosome-transmitting snails in Kenya by the North American crayfish Procambarus clarkii. Am J Trop Med Hyg 45: 339344.
    [Google Scholar]
  61. Hofkin BV, Koech DK, Oumaj J, Loker ES, 1991. The North American crayfish Procambarus clarkii and the biological control of schistosome-transmitting snails in Kenya: laboratory and field investigations. Biol Control 1: 183187.
    [Google Scholar]
  62. Hofkin BV, Hofinger DM, Koech DK, Loker ES, 1992. Predation of Biomphalaria and non-target molluscs by the crayfish Procambarus clarkii: implications for the biological control of schistosomiasis. Ann Trop Med Parasitol 86: 663670.
    [Google Scholar]
  63. Mkoji GM et al., 1999. Impact of the crayfish Procambarus clarkii on Schistosoma haematobium transmission in Kenya. Am J Trop Med Hyg 61: 751759.
    [Google Scholar]
  64. Khalil MT, Sleem SH, 2011. Can the freshwater crayfish eradicate schistosomiasis in Egypt and Africa. J Am Sci 7: 457462.
    [Google Scholar]
  65. Fishar MR, 2006. Red swamp crayfish (Procambarus clarkii) in River Nile, Egypt case study. Biodiversity Monitoring and Assessment Project. Cairo, Egypt: Egyptian Environmental Affairs Agency, 334.
    [Google Scholar]
  66. Le Clec’h W et al., 2018. Whole genome amplification and exome sequencing of archived schistosome miracidia. Parasitology 145: 17391747.
    [Google Scholar]
  67. Platt RN et al., 2019. Ancient hybridization and adaptive introgression of an invadolysin gene in schistosome parasites. Biorxiv 539353. doi: 10.1101/539353.
    [Google Scholar]
  68. Coghlan A et al., International Helminth Genomes Consortium, 2018. Comparative genomics of the major parasitic worms. Nat Genet 51: 163174.
    [Google Scholar]
  69. Crellen T et al., 2016. Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci Rep 6: 20954.
    [Google Scholar]
  70. Ramalli L et al., 2018. Persistence of schistosomal transmission linked to the Cavu river in southern Corsica since 2013. Euro Surveill 23: 14.
    [Google Scholar]
  71. Sato MO et al., 2018. Usefulness of environmental DNA for detecting Schistosoma mansoni occurrence sites in Madagascar. Int J Infect Dis 76: 130136.
    [Google Scholar]
  72. Sengupta ME et al., 2019. Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proc Natl Acad Sci U S A 116: 89318940.
    [Google Scholar]
  73. Wright CA, 1968. Some biological views on the control of schistosomiasis. Trans R Soc Trop Med Hyg 62: 320324.
    [Google Scholar]
  74. Stensgaard A-S, Vounatsou P, Sengupta ME, Utzinger J, 2019. Schistosomes, snails and climate change: current trends and future expectations. Acta Trop 190: 257268.
    [Google Scholar]
  75. Gashaw F, Erko B, Teklehaymanot T, Habtesellasie R, 2008. Assessment of the potential of competitor snails and African catfish (Clarias gariepinus) as biocontrol agents against snail hosts transmitting schistosomiasis. Trans R Soc Trop Med Hyg 102: 774779.
    [Google Scholar]
  76. Marshall B, 2019. Crayfish, catfish and snails: the perils of uncontrolled biological control. Afr J Aquat Sci 44: 15.
    [Google Scholar]
  77. Hoover CM et al., 2019. Modelled effects of prawn aquaculture on poverty alleviation and schistosomiasis control. Nat Sustain 2: 611620.
    [Google Scholar]
  78. Halstead NT et al., 2018. Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nat Commun 9: 837.
    [Google Scholar]
  79. World Health Organization, 2019. Guidelines for Laboratory and Field Testing of Molluscicides for Control of Schistosomiasis. Geneva, Switzerland: WHO.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0831
Loading
/content/journals/10.4269/ajtmh.19-0831
Loading

Data & Media loading...

  • Received : 06 Nov 2019
  • Accepted : 14 Feb 2020
  • Published online : 12 May 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error