1921
Volume 103, Issue 1_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Analyses of the population genetic structure of schistosomes under the “Schistosomiasis Consortium for Operational Research and Evaluation” (SCORE) contrasting treatment pressure scenarios in Tanzania, Niger, and Zanzibar were performed to provide supplementary critical information with which to evaluate the impact of these large-scale control activities and guide how activities could be adjusted. We predicted that population genetic analyses would reveal information on a range of important parameters including, but not exclusive to, recruitment and transmission of genotypes, occurrence of hybridization events, differences in reproductive mode, and degrees of inbreeding, and hence, the evolutionary potential, and responses of parasite populations under contrasting treatment pressures. Key findings revealed that naturally high levels of gene flow and mixing of the parasite populations between neighboring sites were likely to dilute any effects imposed by the SCORE treatment arms. Furthermore, significant inherent differences in parasite fecundity were observed, independent of current treatment arm, but potentially of major impact in terms of maintaining high levels of ongoing transmission in persistent “biological hotspot” sites. Within Niger, naturally occurring viable hybrids were found to be abundant, often occurring in significantly higher proportions than that of single-species infections. By examining parasite population genetic structures across hosts, treatment regimens, and the spatial landscape, our results to date illustrate key transmission processes over and above that which could be achieved through standard parasitological monitoring of prevalence and intensity alone, as well as adding to our understanding of spp. life history strategies in general.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0827
2020-05-12
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/1_Suppl/tpmd190827.html?itemId=/content/journals/10.4269/ajtmh.19-0827&mimeType=html&fmt=ahah

References

  1. Colley DG, Bustinduy AL, Secor WE, King CH, 2014. Human schistosomiasis. Lancet 383: 22532264.
    [Google Scholar]
  2. Webster JP, Molyneux DH, Hotez PJ, Fenwick A, 2014. The contribution of mass drug administration to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci 369: 20130434.
    [Google Scholar]
  3. Colley DG, Andros TS, Campbell CH Jr., 2017. Schistosomiasis is more prevalent than previously thought: what does it mean for public health goals, policies, strategies, guidelines and intervention programs? Infect Dis Poverty 6: 63.
    [Google Scholar]
  4. Osakunor DNM, Woolhouse MEJ, Mutapi F, 2018. Paediatric schistosomiasis: what we know and what we need to know. PLoS Negl Trop Dis 12: e0006144.
    [Google Scholar]
  5. Rudge JW, Carabin H, Balolong E, Tallo V, Shrivastava J, Lu DB, Basanez MG, Olveda R, McGarvey ST, Webster JP, 2008. Population genetics of Schistosoma japonicum within the Philippines suggest high levels of transmission between humans and dogs. PLoS Negl Trop Dis 2: e340.
    [Google Scholar]
  6. Rudge JW, Lu DB, Fang GR, Wang TP, Basanez MG, Webster JP, 2009. Parasite genetic differentiation by habitat type and host species: molecular epidemiology of Schistosoma japonicum in hilly and marshland areas of Anhui province, China. Mol Ecol 18: 21342147.
    [Google Scholar]
  7. Rudge JW, Webster JP, Lu DB, Wang TP, Fang GR, Basanez MG, 2013. Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China. Proc Natl Acad Sci USA 110: 1145711462.
    [Google Scholar]
  8. Catalano S, Sene M, Diouf ND, Fall CB, Borlase A, Leger E, Ba K, Webster JP, 2018. Rodents as natural hosts of zoonotic Schistosoma species and hybrids: an epidemiological and evolutionary perspective from west Africa. J Infect Dis 218: 429433.
    [Google Scholar]
  9. Webster JP, Gower CM, Knowles SC, Molyneux DH, Fenton A, 2016. One health - an ecological and evolutionary framework for tackling neglected zoonotic diseases. Evol Appl 9: 313333.
    [Google Scholar]
  10. King KC, Stelkens RB, Webster JP, Smith DF, Brockhurst MA, 2015. Hybridization in parasites: consequences for adaptive evolution, pathogenesis, and public health in a changing world. PLoS Pathog 11: e1005098.
    [Google Scholar]
  11. Leger E, Garba A, Hamidou AA, Webster BL, Pennance T, Rollinson D, Webster JP, 2016. Introgressed animal schistosomes Schistosoma curassoni and S. bovis naturally infecting humans. Emerg Infect Dis 22: 22122214.
    [Google Scholar]
  12. Leger E, Webster JP, 2017. Hybridizations within the genus Schistosoma: implications for evolution, epidemiology and control. Parasitology 144: 6580.
    [Google Scholar]
  13. Webster BL, Diaw OT, Seye MM, Webster JP, Rollinson D, 2013. Introgressive hybridization of Schistosoma haematobium group species in Senegal: species barrier break down between ruminant and human schistosomes. PLoS Negl Trop Dis 7: e2110.
    [Google Scholar]
  14. Boissier J, Mone H, Mitta G, Bargues MD, Molyneux D, Mas-Coma S, 2015. Schistosomiasis reaches Europe. Lancet Infect Dis 15: 757758.
    [Google Scholar]
  15. Crellen T, Walker M, Lamberton PH, Kabatereine NB, Tukahebwa EM, Cotton JA, Webster JP, 2016. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin Infect Dis 63: 11511159.
    [Google Scholar]
  16. Colley DG et al., 2020. Evaluation, validation, and recognition of the point of care circulating cathodic antigen, urine-based assay for mapping Schistosoma mansoni infections. Am J Trop Med Hyg 103 (Suppl 1): 4249.
    [Google Scholar]
  17. Ezeamama AE et al., 2016. Gaining and sustaining schistosomiasis control: study protocol and baseline data prior to different treatment strategies in five African countries. BMC Infect Dis 16: 229.
    [Google Scholar]
  18. Knopp S et al., 2019. Evaluation of integrated interventions layered on mass drug administration for urogenital schistosomiasis elimination: a cluster-randomised trial. Lancet Glob Health 7: e1118e1129.
    [Google Scholar]
  19. Shen Y et al., 2017. Protocol and baseline data for a multi-year cohort study of the effects of different mass drug treatment approaches on functional morbidities from schistosomiasis in four African countries. BMC Infect Dis 17: 652.
    [Google Scholar]
  20. Pennance T, Ame SM, Amour AK, Suleiman KR, Allan F, Rollinson D, Webster BL, 2018. Occurrence of Schistosoma bovis on Pemba Island, Zanzibar: implications for urogenital schistosomiasis transmission monitoring. Parasitology 145: 17271731.
    [Google Scholar]
  21. Webster BL et al., 2012. Genetic diversity within Schistosoma haematobium: DNA barcoding reveals two distinct groups. PLoS Negl Trop Dis 6: e1882.
    [Google Scholar]
  22. Knopp S et al., 2019. A 5-year intervention study on elimination of urogenital schistosomiasis in Zanzibar: parasitological results of annual cross-sectional surveys. PLoS Negl Trop Dis 13: e0007268.
    [Google Scholar]
  23. Knopp S et al., 2012. Study and implementation of urogenital schistosomiasis elimination in Zanzibar (Unguja and Pemba islands) using an integrated multidisciplinary approach. BMC Public Health 12: 930.
    [Google Scholar]
  24. Knopp S et al., 2013. Elimination of schistosomiasis transmission in Zanzibar: baseline findings before the onset of a randomized intervention trial. PLoS Negl Trop Dis 7: e2474.
    [Google Scholar]
  25. WHO, 2013. Monitoring and evaluation of preventive chemotherapy. Wkly Epidemiol Rec 88: 1724.
    [Google Scholar]
  26. Albonico M, Levecke B, LoVerde PT, Montresor A, Prichard R, Vercruysse J, Webster JP, 2015. Monitoring the efficacy of drugs for neglected tropical diseases controlled by preventive chemotherapy. J Glob Antimicrob Resist 3: 229236.
    [Google Scholar]
  27. Walker M et al., 2016. New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel. Parasit Vectors 9: 41.
    [Google Scholar]
  28. Jule AM, Vaillant M, Lang TA, Guerin PJ, Olliaro PL, 2016. The schistosomiasis clinical trials landscape: a systematic review of antischistosomal treatment efficacy studies and a case for sharing individual participant-level data (IPD). PLoS Negl Trop Dis 10: e0004784.
    [Google Scholar]
  29. Anderson RM, Turner HC, Farrell SH, Yang J, Truscott JE, 2015. What is required in terms of mass drug administration to interrupt the transmission of schistosome parasites in regions of endemic infection? Parasit Vectors 8: 553.
    [Google Scholar]
  30. Toor J, Alsallaq R, Truscott JE, Turner HC, Werkman M, Gurarie D, King CH, Anderson RM, 2018. Are we on our way to achieving the 2020 goals for schistosomiasis morbidity control using current World Health Organization guidelines? Clin Infect Dis 66 (Suppl 4): S245S252.
    [Google Scholar]
  31. Neves MI, Webster JP, Walker M, 2019. Estimating helminth burdens using sibship reconstruction. Parasit Vectors 12: 441.
    [Google Scholar]
  32. Steinauer ML, Christie MR, Blouin MS, Agola LE, Mwangi IN, Maina GM, Mutuku MW, Kinuthia JM, Mkoji GM, Loker ES, 2013. Non-invasive sampling of schistosomes from humans requires correcting for family structure. PLoS Negl Trop Dis 7: e2456.
    [Google Scholar]
  33. Gower CM, Shrivastava J, Lamberton PH, Rollinson D, Webster BL, Emery A, Kabatereine NB, Webster JP, 2007. Development and application of an ethically and epidemiologically advantageous assay for the multi-locus microsatellite analysis of Schistosoma mansoni. Parasitology 134: 523536.
    [Google Scholar]
  34. Shrivastava J, Gower CM, Balolong E Jr, Wang TP, Qian BZ, Webster JP, 2005. Population genetics of multi-host parasites--the case for molecular epidemiological studies of Schistosoma japonicum using larval stages from naturally infected hosts. Parasitology 131: 617626.
    [Google Scholar]
  35. Doyle SR et al., 2019. Evaluation of DNA extraction methods on individual helminth egg and larval stages for whole-genome sequencing. Front Genet 10: 826.
    [Google Scholar]
  36. Le Clec’h W et al., 2018. Whole genome amplification and exome sequencing of archived schistosome miracidia. Parasitology 145: 17391747.
    [Google Scholar]
  37. Crellen T et al., 2016. Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci Rep 6: 20954.
    [Google Scholar]
  38. Gower CM et al., 2013. Population genetic structure of Schistosoma mansoni and Schistosoma haematobium from across six sub-Saharan African countries: implications for epidemiology, evolution and control. Acta Trop 128: 261274.
    [Google Scholar]
  39. Webster BL et al., 2015. Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium. Parasit Vectors 8: 432.
    [Google Scholar]
  40. Blair L, Webster JP, Barker GC, 2001. Isolation and characterization of polymorphic microsatellite markers in Schistosoma mansoni from Africa. Mol Ecol Notes 1: 9395.
    [Google Scholar]
  41. Curtis J, Sorensen RE, Page LK, Minchella DJ, 2001. Microsatellite loci in the human blood fluke Schistosoma mansoni and their utility for other schistosome species. Mol Ecol Notes 1: 143145.
    [Google Scholar]
  42. Durand P, Sire C, Theron A, 2000. Isolation of microsatellite markers in the digenetic trematode Schistosoma mansoni from Guadeloupe Island. Mol Ecol 9: 997998.
    [Google Scholar]
  43. Golan R, Gower CM, Emery AM, Rollinson D, Webster JP, 2008. Isolation and characterization of the first polymorphic microsatellite markers for Schistosoma haematobium and their application in multiplex reactions of larval stages. Mol Ecol Resour 8: 647649.
    [Google Scholar]
  44. Gower CM, Gabrielli AF, Sacko M, Dembele R, Golan R, Emery AM, Rollinson D, Webster JP, 2011. Population genetics of Schistosoma haematobium: development of novel microsatellite markers and their application to schistosomiasis control in Mali. Parasitology 138: 978994.
    [Google Scholar]
  45. Glenn TC, Lance SL, Mckee AM, Webster BL, Emery AM, Zerlotini A, Oliveira G, Rollinson D, Faircloth BC, 2013. Significant variance in genetic diversity among populations of Schistosoma haematobium detected using microsatellite DNA loci from a genome-wide database. Parasit Vectors 6: 300.
    [Google Scholar]
  46. Curtis J, Sorensen RE, Minchella DJ, 2002. Schistosome genetic diversity: the implications of population structure as detected with microsatellite markers. Parasitology 125: S51S59.
    [Google Scholar]
  47. Gower CM, Gehre F, Marques SR, Lamberton PHL, Lwambo NJ, Webster JP, 2017. Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme. Parasit Vectors 10: 593.
    [Google Scholar]
  48. Kittur N et al., 2020. Discovering, defining, and summarizing persistent hotspots in SCORE studies. Am J Trop Med Hyg 103 (Suppl 1): 2429.
    [Google Scholar]
  49. Pennance T, Person B, Muhsin MA, Khamis AN, Muhsin J, Khamis IS, Mohammed KA, Kabole F, Rollinson D, Knopp S, 2016. Urogenital schistosomiasis transmission on Unguja Island, Zanzibar: characterisation of persistent hot-spots. Parasit Vectors 9: 646.
    [Google Scholar]
  50. Anderson RM, May RM, 1985. Age-related changes in the rate of disease transmissions - implications for the design of vaccination programs. J Hyg (Lond) 94: 365436.
    [Google Scholar]
  51. Anderson RM, May RM, 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford, United Kingdom: Oxford University Press.
    [Google Scholar]
  52. Cheever AW, 1968. A quantitative post-mortem study of Schistosomiasis mansoni in man. Am J Trop Med Hyg 17: 3864.
    [Google Scholar]
  53. Cheever AW, Kamel IA, Elwi AM, Mosimann JE, Danner R, 1977. Schistosoma mansoni and S. haematobium infections in Egypt. II. Quantitative parasitological findings at necropsy. Am J Trop Med Hyg 26: 702716.
    [Google Scholar]
  54. Cheever AW, 1986. Density-dependent fecundity in Schistosoma mansoni infections in man: a reply. Trans R Soc Trop Med Hyg 80: 991992.
    [Google Scholar]
  55. Medley G, Anderson RM, 1985. Density-dependent fecundity in Schistosoma mansoni infections in man. Trans R Soc Trop Med Hyg 79: 532534.
    [Google Scholar]
  56. Wertheimer SP, Vermund SH, Lumey LH, Singer B, 1987. Lack of demonstrable density-dependent fecundity of schistosomiasis mansoni: analyses of Egyptian quantitative human autopsies. Am J Trop Med Hyg 37: 7984.
    [Google Scholar]
  57. Cummings RD, Nyame AK, 1999. Schistosome glysoconjugates. Biochim Biophys Acta 1455: 363374.
    [Google Scholar]
  58. Polman K, Stelma FF, De Vlas SJ, Sow S, Fathers L, Le Cessie S, Talla I, Deelder AM, Gryseels B, 2001. Dynamics of egg counts and circulating antigen levels in a recent Schistosoma mansoni focus in northern Senegal. Trop Med Int Health 6: 538544.
    [Google Scholar]
  59. De Bont J, Shaw DJ, Vercruysse J, 2002. The relationship between faecal egg counts, worm burden and tissue egg counts in early Schistosoma mattheei infections in cattle. Acta Trop 81: 6376.
    [Google Scholar]
  60. Van Lieshout L, Polderman AM, De Vlas SJ, De Caluwe P, Krijger FW, Gryseels B, Deelder AM, 1995. Analysis of worm burden variation in human Schistosoma mansoni infections by determination of serum levels of circulating anodic antigen and circulating cathodic antigen. J Infect Dis 172: 13361342.
    [Google Scholar]
  61. Churcher TS, Basanez MG, 2008. Density dependence and the spread of anthelmintic resistance. Evolution 62: 528537.
    [Google Scholar]
  62. Knopp S, Stothard JR, Rollinson D, Mohammed KA, Khamis IS, Marti H, Utzinger J, 2013. From morbidity control to transmission control: time to change tactics against helminths on Unguja Island, Zanzibar. Acta Trop 128: 412422.
    [Google Scholar]
  63. Borlase A, Webster JP, Rudge JW, 2018. Opportunities and challenges for modelling epidemiological and evolutionary dynamics in a multihost, multiparasite system: zoonotic hybrid schistosomiasis in west Africa. Evol Appl 11: 501515.
    [Google Scholar]
  64. Kincaid-Smith J et al., 2018. Whole genome sequencing and morphological analysis of the human-infecting schistosome emerging in Europe reveals a complex admixture between Schistosoma haematobium and Schistosoma bovis parasites. BioRxiv. Available at: https://doi.org/10.1101/387969.
    [Google Scholar]
  65. Platt RN et al., 2019. Ancient hybridization and adaptive introgression of an invadolysin gene in schistosome parasites. Mol Biol Evol 36: 21272142.
    [Google Scholar]
  66. Chevalier FD et al., 2019. Oxamniquine resistance alleles are widespread in old world Schistosoma mansoni and predate drug deployment. PLoS Pathog 15: e1007881.
    [Google Scholar]
  67. Faust CL et al., 2019. High levels of genetic diversity in the macroparasite Schistosoma mansoni despite repeated drug treatments may be facilitated by gene flow. Parasit Vectors 12: 607.
    [Google Scholar]
  68. Blanton RE, Blank WA, Costa JM, Carmo TM, Reis EA, Silva LK, Barbosa LM, Test MR, Reis MG, 2011. Schistosoma mansoni population structure and persistence after praziquantel treatment in two villages of Bahia, Brazil. Int J Parasitol 41: 10931099.
    [Google Scholar]
  69. French MD, Churcher TS, Gambhir M, Fenwick A, Webster JP, Kabatereine NB, Basanez MG, 2010. Observed reductions in Schistosoma mansoni transmission from large-scale administration of praziquantel in Uganda: a mathematical modelling study. PLoS Negl Trop Dis 4: e897.
    [Google Scholar]
  70. Norton AJ, Gower CM, Lamberton PH, Webster BL, Lwambo NJ, Blair L, Fenwick A, Webster JP, 2010. Genetic consequences of mass human chemotherapy for Schistosoma mansoni: population structure pre- and post-praziquantel treatment in Tanzania. Am J Trop Med Hyg 83: 951957.
    [Google Scholar]
  71. Xu D, Curtis J, Feng Z, Minchella DJ, 2005. On the role of schistosome mating structure in the maintenance of drug resistant strains. Bull Math Biol 67: 12071226.
    [Google Scholar]
  72. Kittur N, Binder S, Campbell CH, King CH, Kinung’hi S, Olsen A, Magnussen P, Colley DG, 2017. Defining persistent hotspots: areas that fail to decrease meaningfully in prevalence after multiple years of mass drug administration with praziquantel for control of schistosomiasis. Am J Trop Med Hyg 97: 18101817.
    [Google Scholar]
  73. Gower CM, Vince L, Webster JP, 2017. Should we be treating animal schistosomiasis in Africa? The need for a one health economic evaluation of schistosomiasis control in people and their livestock. Trans R Soc Trop Med Hyg 111: 244247.
    [Google Scholar]
  74. Emery AM, Allan FE, Rabone ME, Rollinson D, 2012. Schistosomiasis collection at NHM (SCAN). Parasit Vectors 5: 185.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0827
Loading
/content/journals/10.4269/ajtmh.19-0827
Loading

Data & Media loading...

  • Received : 06 Nov 2019
  • Accepted : 08 Apr 2020
  • Published online : 12 May 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error