1921
Volume 103, Issue 1_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Efforts to control infection depend on the ability of programs to effectively detect and quantify infection levels and adjust programmatic approaches based on these levels and program goals. One of the three major objectives of the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) has been to develop and/or evaluate tools that would assist Neglected Tropical Disease program managers in accomplishing this fundamental task. The advent of a widely available point-of-care (POC) assay to detect schistosome circulating cathodic antigen (CCA) in urine with a rapid diagnostic test (the POC-CCA) in 2008 led SCORE and others to conduct multiple evaluations of this assay, comparing it with the Kato–Katz (KK) stool microscopy assay—the standard used for more than 45 years. This article describes multiple SCORE-funded studies comparing the POC-CCA and KK assays, the pros and cons of these assays, the use of the POC-CCA assay for mapping of infections in areas across the spectrum of prevalence levels, and the validation and recognition that the POC-CCA, although not infallible, is a highly useful tool to detect low-intensity infections in low-to-moderate prevalence areas. Such an assay is critical, as control programs succeed in driving down prevalence and intensity and seek to either maintain control or move to elimination of transmission of .

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0788
2020-05-12
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/1_Suppl/tpmd190788.html?itemId=/content/journals/10.4269/ajtmh.19-0788&mimeType=html&fmt=ahah

References

  1. Katz N, Chaves A, Pellegrino J, 1972. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14: 397400.
    [Google Scholar]
  2. de Vlas SJ, Gryseels B, 1992. Underestimation of Schistosoma mansoni prevalences. Parasitol Today 8: 274277.
    [Google Scholar]
  3. de Vlas SJ, Gryseels B, van Oortmarssen GJ, Polderman AM, Habbema JD, 1993. A pocket chart to estimate true Schistosoma mansoni prevalences. Parasitol Today 9: 305307.
    [Google Scholar]
  4. Deelder AM et al., 1994. Quantitative diagnosis of Schistosoma infections by measurement of circulating antigens in serum and urine. Trop Geogr Med 46: 233238.
    [Google Scholar]
  5. Stothard JR, Kabatereine NB, Tukahebwa EM, Kazibwe F, Rollinson D, Mathieson W, Webster JP, Fenwick A, 2006. Use of circulating cathodic antigen (CCA) dipsticks for detection of intestinal and urinary schistosomiasis. Acta Trop 97: 219228.
    [Google Scholar]
  6. Stothard JR, 2009. Improving control of African schistosomiasis: towards effective use of rapid diagnostic tests within an appropriate disease surveillance model. Trans R Soc Trop Med Hyg 103: 325332.
    [Google Scholar]
  7. Adriko M, Standley CJ, Tinkitina B, Tukahebwa EM, Fenwick A, Fleming FM, Sousa-Figueiredo JC, Stothard JR, Kabatereine NB, 2014. Evaluation of circulating cathodic antigen (CCA) urine-cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri district, Uganda. Acta Trop 136: 5057.
    [Google Scholar]
  8. Coulibaly JT et al., 2011. Accuracy of urine circulating cathodic antigen (CCA) test for Schistosoma mansoni diagnosis in different settings of Cote d’Ivoire. PLoS Negl Trop Dis 5: e1384.
    [Google Scholar]
  9. Erko B, Medhin G, Teklehaymanot T, Degarege A, Legesse M, 2013. Evaluation of urine-circulating cathodic antigen (urine-CCA) cassette test for the detection of Schistosoma mansoni infection in areas of moderate prevalence in Ethiopia. Trop Med Int Health 18: 10291035.
    [Google Scholar]
  10. Tchuem Tchuente LA, Kuete Fouodo CJ, Kamwa Ngassam RI, Sumo L, Dongmo Noumedem C, Kenfack CM, Gipwe NF, Nana ED, Stothard JR, Rollinson D, 2012. Evaluation of circulating cathodic antigen (CCA) urine-tests for diagnosis of Schistosoma mansoni infection in Cameroon. PLoS Negl Trop Dis 6: e1758.
    [Google Scholar]
  11. Foo KT, Blackstock AJ, Ochola EA, Matete DO, Mwinzi PN, Montgomery SP, Karanja DM, Secor WE, 2015. Evaluation of point-of-contact circulating cathodic antigen assays for the detection of Schistosoma mansoni infection in low-, moderate-, and high-prevalence schools in western Kenya. Am J Trop Med Hyg 92: 12271232.
    [Google Scholar]
  12. Colley DG et al., 2013. A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. Am J Trop Med Hyg 88: 426432.
    [Google Scholar]
  13. Kittur N, Castleman JD, Campbell CH Jr., King CH, Colley DG, 2016. Comparison of Schistosoma mansoni prevalence and intensity of infection, as determined by the circulating cathodic antigen urine assay or by the Kato-Katz fecal assay: a systematic review. Am J Trop Med Hyg 94: 605610.
    [Google Scholar]
  14. Barenbold O et al., 2018. Translating preventive chemotherapy prevalence thresholds for Schistosoma mansoni from the Kato-Katz technique into the point-of-care circulating cathodic antigen diagnostic test. PLoS Negl Trop Dis 12: e0006941.
    [Google Scholar]
  15. Worrell CM, Bartoces M, Karanja DM, Ochola EA, Matete DO, Mwinzi PN, Montgomery SP, Secor WE, 2015. Cost analysis of tests for the detection of Schistosoma mansoni infection in children in western Kenya. Am J Trop Med Hyg 92: 12331239.
    [Google Scholar]
  16. Mwinzi PN, Kittur N, Ochola E, Cooper PJ, Campbell CH Jr., King CH, Colley DG, 2015. Additional evaluation of the point-of-contact circulating cathodic antigen assay for Schistosoma mansoni infection. Front Public Health 3: 48.
    [Google Scholar]
  17. Casacuberta-Partal M, Hoekstra PT, Kornelis D, van Lieshout L, van Dam GJ, 2019. An innovative and user-friendly scoring system for standardised quantitative interpretation of the urine-based point-of-care strip test (POC-CCA) for the diagnosis of intestinal schistosomiasis: a proof-of-concept study. Acta Trop 199: 105150.
    [Google Scholar]
  18. Ortu G et al., 2016. The impact of an 8-year mass drug administration programme on prevalence, intensity and co-infections of soil-transmitted helminthiases in Burundi. Parasit Vectors 9: 513.
    [Google Scholar]
  19. Ortu G et al., 2017. Countrywide reassessment of Schistosoma mansoni infection in Burundi using a urine-circulating cathodic antigen rapid test: informing the National Control Program. Am J Trop Med Hyg 96: 664673.
    [Google Scholar]
  20. Ruberanziza E et al., 2020. Nationwide remapping of Schistosoma mansoni infection in Rwanda using Circulating Cathodic Antigen Rapid Test: taking steps toward elimination. Am J Trop Med Hyg. 103: 315324.
    [Google Scholar]
  21. Sousa MS, van Dam GJ, Pinheiro MCC, de Dood CJ, Peralta JM, Peralta RHS, Daher EF, Corstjens P, Bezerra FSM, 2019. Performance of an ultra-sensitive assay targeting the circulating anodic antigen (CAA) for detection of Schistosoma mansoni infection in a low endemic area in Brazil. Front Immunol 10: 682.
    [Google Scholar]
  22. Clements MN et al., 2018. Latent class analysis to evaluate performance of point-of-care CCA for low-intensity Schistosoma mansoni infections in Burundi. Parasit Vectors 11: 111.
    [Google Scholar]
  23. Jordan P, 1985. Schistosomiasis: the St. Lucia Project. Cambridge, United Kingdom: Cambridge University Press.
    [Google Scholar]
  24. Gaspard J et al., 2020. Survey of schistosomiasis in Saint Lucia: evidence for interruption of transmission. Amer J Trop Med Hyg. Available at: https://doi.org/10.4269/ajtmh.19-0904.
    [Google Scholar]
  25. Maddison SE, Slemenda SB, Tsang VC, Pollard RA, 1985. Serodiagnosis of Schistosoma mansoni with microsomal adult worm antigen in an enzyme-linked immunosorbent assay using a standard curve developed with a reference serum pool. Am J Trop Med Hyg 34: 484494.
    [Google Scholar]
  26. Wilson S, Jones FM, van Dam GJ, Corstjens PL, Riveau G, Fitzsimmons CM, Sacko M, Vennervald BJ, Dunne DW, 2014. Human Schistosoma haematobium antifecundity immunity is dependent on transmission intensity and associated with immunoglobulin G1 to worm-derived antigens. J Infect Dis 210: 20092016.
    [Google Scholar]
  27. Haggag AA, Rabiee A, Abd Elaziz KM, Gabrielli AF, Abdel Hay R, Ramzy RM, 2017. Mapping of Schistosoma mansoni in the Nile Delta, Egypt: assessment of the prevalence by the circulating cathodic antigen urine assay. Acta Trop 167: 917.
    [Google Scholar]
  28. Fenwick A, 2017. Schistosomiasis research and control since the retirement of Sir Patrick Manson in 1914. Trans R Soc Trop Med Hyg 111: 191198.
    [Google Scholar]
  29. Haggag AA, Rabiee A, Abd Elaziz KM, Campbell CH, Colley DG, Ramzy RMR, 2019. Thirty-day daily comparisons of Kato-Katz and CCA assays of 45 Egyptian children in areas with very low prevalence of Schistosoma mansoni. Am J Trop Med Hyg 100: 578583.
    [Google Scholar]
  30. Haggag AA, Casacuberta Partal M, Rabiee A, Abd Elaziz KM, Campbell CH, Colley DG, Ramzy RMR, 2019. Multiple praziquantel treatments of Schistosoma mansoni egg-negative, CCA-positive schoolchildren in a very low endemic setting in Egypt do not consistently alter CCA results. Am J Trop Med Hyg 100: 15071511.
    [Google Scholar]
  31. Walters B, 2016. Migration, land use and forest change in St. Lucia, West Indies. Land Use Policy 51: 290300.
    [Google Scholar]
  32. Walters B, 2016. St. Lucia’s tourism landscapes: economic development and environmental change in the West Indies. Caribbean Geogr 20: 321.
    [Google Scholar]
  33. Ruberanziza EKM, Ortu G, Kanobana K, Mupfasoni D, Ruxin J, Fenwick A, Nyatanyi T, Karema C, Munyaneza T, Polman K, 2015. Nkombo island: the most important schistosomiasis mansoni focus in Rwanda. Am J Life Sci 3: 2731.
    [Google Scholar]
  34. Ruxin J, Negin J, 2012. Removing the neglect from neglected tropical diseases: the Rwandan experience 2008–2010. Glob Public Health 7: 812822.
    [Google Scholar]
  35. Krauth SJ, Coulibaly JT, Knopp S, Traore M, N'Goran EK, Utzinger J, 2012. An in-depth analysis of a piece of shit: distribution of Schistosoma mansoni and hookworm eggs in human stool. PLoS Negl Trop Dis 6: e1969.
    [Google Scholar]
  36. Cavalcanti MG, Cunha AFA, Peralta JM, 2019. The advances in molecular and new point-of-care (POC) diagnosis of schistosomiasis pre- and post-praziquantel use: in the pursuit of more reliable approaches for low endemic and non-endemic areas. Front Immunol 10: 858.
    [Google Scholar]
  37. Viana AG et al., 2019. Discrepancy between batches and impact on the sensitivity of point-of-care circulating cathodic antigen tests for Schistosoma mansoni infection. Acta Trop 197: 105049.
    [Google Scholar]
  38. Ashton RA, Stewart BT, Petty N, Lado M, Finn T, Brooker S, Kolaczinski JH, 2011. Accuracy of circulating cathodic antigen tests for rapid mapping of Schistosoma mansoni and S. haematobium infections in southern Sudan. Trop Med Int Health 16: 10991103.
    [Google Scholar]
  39. Rubaba O, Chimbari MJ, Soko W, Manyangadze T, Mukaratirwa S, 2018. Validation of a urine circulating cathodic antigen cassette test for detection of Schistosoma haematobium in Mkhanyakude district of South Africa. Acta Trop 182: 161165.
    [Google Scholar]
  40. Sanneh B et al., 2017. Field evaluation of a schistosome circulating cathodic antigen rapid test kit at point-of-care for mapping of schistosomiasis endemic districts in the Gambia. PLoS One 12: e0182003.
    [Google Scholar]
  41. Stothard JR et al., 2009. An evaluation of urine-CCA strip test and fingerprick blood SEA-ELISA for detection of urinary schistosomiasis in schoolchildren in Zanzibar. Acta Trop 111: 6470.
    [Google Scholar]
  42. Savioli L, Hatz C, Dixon H, Kisumku UM, Mott KE, 1990. Control of morbidity due to Schistosoma haematobium on Pemba Island: egg excretion and hematuria as indicators of infection. Am J Trop Med Hyg 43: 289295.
    [Google Scholar]
  43. Siongok TKA, Ouma JH, Houser HB, Warren KS, 1978. Quantification of infection with Schistosoma haematobium in relation to epidemiology and selective population chemotherapy. II mass treatment with a single oral dose of metrifonate. J Infect Dis 138: 856858.
    [Google Scholar]
  44. Corstjens PLAM et al., 2020. Circulating Anodic Antigen (CAA): a highly sensitive diagnostic biomarker to detect active Schistosoma infections—improvement and use during SCORE. Am J Trop Med Hyg 103 (Suppl 1): 5057.
    [Google Scholar]
  45. Ochodo EA, Gopalakrishna G, Spek B, Reitsma JB, van Lieshout L, Polman K, Lamberton P, Bossuyt PM, Leeflang MM, 2015. Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas. Cochrane Database Syst Rev 2015: CD009579.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0788
Loading
/content/journals/10.4269/ajtmh.19-0788
Loading

Data & Media loading...

  • Received : 23 Oct 2019
  • Accepted : 01 Feb 2020
  • Published online : 12 May 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error