1921
Volume 103, Issue 1_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Herein, we summarize what we consider are major contributions resulting from the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) program, including its key findings and key messages from those findings. Briefly, SCORE’s key findings are as follows: i) biennial mass drug administration (MDA) with praziquantel can control schistosomiasis to moderate levels of prevalence; ii) MDA alone will not achieve elimination; iii) to attain and sustain control throughout endemic areas, persistent hotspots need to be identified following a minimal number of years of annual MDA and controlled through adaptive strategies; iv) annual MDA is more effective than biennial MDA in high-prevalence areas; v) the current World Health Organization thresholds for decision-making based on the prevalence of heavy infections should be redefined; and vi) point-of-care circulating cathodic antigen urine assays are useful for mapping in low-to-moderate prevalence areas. The data and specimens collected and curated through SCORE efforts will continue to be critical resource for future research. Besides providing useful information for program managers and revision of guidelines for schistosomiasis control and elimination, SCORE research and outcomes have identified additional questions that need to be answered as the schistosomiasis community continues to implement effective, evidence-based programs. An overarching contribution of SCORE has been increased cohesiveness within the schistosomiasis field-oriented community, thereby fostering new and productive collaborations. Based on SCORE’s findings and experiences, we propose new approaches, thresholds, targets, and goals for control and elimination of schistosomiasis, and recommend research and evaluation activities to achieve these targets and goals.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0787
2020-05-12
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/1_Suppl/tpmd190787.html?itemId=/content/journals/10.4269/ajtmh.19-0787&mimeType=html&fmt=ahah

References

  1. Colley DG, 2014. Morbidity control of schistosomiasis by mass drug administration: how can we do it best and what will it take to move on to elimination? Trop Med Health 42: 2532.
    [Google Scholar]
  2. Secor WE, Colley DG, 2018. When should the emphasis on schistosomiasis control move to elimination? Trop Med Infect Dis 3: E85.
    [Google Scholar]
  3. Colley DG, Jacobson JA, Binder S, 2020. Schistosomiasis Consortium for Operational Research and Evaluation (SCORE): its foundations, development, and evolution. Am J Trop Med Hyg 103 (Suppl 1): 513.
    [Google Scholar]
  4. Leger E, Garba A, Hamidou AA, Webster BL, Pennance T, Rollinson D, Webster JP, 2016. Introgressed animal schistosomes Schistosoma curassoni and S. bovis naturally infecting humans. Emerg Infect Dis 22: 22122214.
    [Google Scholar]
  5. Person B, Knopp S, Ali SM, A’Kadir FM, Khamis AN, Ali JN, Lymo JH, Mohammed KA, Rollinson D, 2016. Community co-designed schistosomiasis control interventions for school-aged children in Zanzibar. J Biosoc Sci 48 (Suppl 1): S56S73.
    [Google Scholar]
  6. Fenwick A et al., 2009. The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136: 17191730.
    [Google Scholar]
  7. Linehan M, Hanson C, Weaver A, Baker M, Kabore A, Zoerhoff KL, Sankara D, Torres S, Ottesen EA, 2011. Integrated implementation of programs targeting neglected tropical diseases through preventive chemotherapy: proving the feasibility at national scale. Am J Trop Med Hyg 84: 514.
    [Google Scholar]
  8. WHO, 2011. Schistosomiasis number of people treated, 2009. Wkly Epidemiol Rec 86: 7380.
    [Google Scholar]
  9. King CH, Sturrock RF, Kariuki HC, Hamburger J, 2006. Transmission control for schistosomiasis—why it matters now. Trends Parasitol 22: 575582.
    [Google Scholar]
  10. Ottesen EA, 2006. Lymphatic filariasis: treatment, control and elimination. Adv Parasitol 61: 395441.
    [Google Scholar]
  11. King CH, 2009. Toward the elimination of schistosomiasis. N Engl J Med 360: 106109.
    [Google Scholar]
  12. Gray DJ, McManus DP, Li Y, Williams GM, Bergquist R, Ross AG, 2010. Schistosomiasis elimination: lessons from the past guide the future. Lancet Infect Dis 10: 733736.
    [Google Scholar]
  13. Rollinson D et al., 2013. Time to set the agenda for schistosomiasis elimination. Acta Trop 128: 423440.
    [Google Scholar]
  14. Bergquist R, Johansen MV, Utzinger J, 2009. Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol 25: 151156.
    [Google Scholar]
  15. Utzinger J, Becker SL, van Lieshout L, van Dam GJ, Knopp S, 2015. New diagnostic tools in schistosomiasis. Clin Microbiol Infect 21: 529542.
    [Google Scholar]
  16. Bärenbold O, Raso G, Coulibaly JT, N’Goran EK, Utzinger J, Vounatsou P, 2017. Estimating sensitivity of the Kato-Katz technique for the diagnosis of Schistosoma mansoni and hookworm in relation to infection intensity. PLoS Negl Trop Dis 11: e0005953.
    [Google Scholar]
  17. King CH et al., 2020. Impact of different mass drug administration strategies for gaining and sustaining control of Schistosoma mansoni and Schistosoma haematobium infection in Africa. Am J Trop Med Hyg 103 (Suppl 1): 1423.
    [Google Scholar]
  18. Kittur N et al., 2019. Persistent hotspots in Schistosomiasis Consortium for Operational Research and Evaluation studies for gaining and sustaining control of schistosomiasis after four years of mass drug administration of praziquantel. Am J Trop Med Hyg 101: 617627.
    [Google Scholar]
  19. Kittur N et al., 2020. Discovering, defining, and summarizing persistent hotspots in SCORE studies. Am J Trop Med Hyg 103 (Suppl 1): 2429.
    [Google Scholar]
  20. Danso-Appiah A, Olliaro PL, Donegan S, Sinclair D, Utzinger J, 2013. Drugs for treating Schistosoma mansoni infection. Cochrane Database Syst Rev 2013: CD000528.
    [Google Scholar]
  21. Kramer CV, Zhang F, Sinclair D, Olliaro PL, 2014. Drugs for treating urinary schistosomiasis. Cochrane Database Syst Rev 2014: CD000053.
    [Google Scholar]
  22. Ortu G et al., 2017. Countrywide reassessment of Schistosoma mansoni infection in Burundi using a urine-circulating cathodic antigen rapid test: informing the national control program. Am J Trop Med Hyg 96: 664673.
    [Google Scholar]
  23. Knopp S, Ame SM, Hattendorf J, Ali SM, Khamis IS, Bakar F, Khamis MA, Person B, Kabole F, Rollinson D, 2018. Urogenital schistosomiasis elimination in Zanzibar: accuracy of urine filtration and haematuria reagent strips for diagnosing light intensity Schistosoma haematobium infections. Parasit Vectors 11: 552.
    [Google Scholar]
  24. Clements MN et al., 2018. Latent class analysis to evaluate performance of point-of-care CCA for low-intensity Schistosoma mansoni infections in Burundi. Parasit Vectors 11: 111.
    [Google Scholar]
  25. Knopp S et al., 2015. Sensitivity and specificity of a urine circulating anodic antigen test for the diagnosis of Schistosoma haematobium in low endemic settings. PLoS Negl Trop Dis 9: e0003752.
    [Google Scholar]
  26. Bärenbold O et al., 2018. Translating preventive chemotherapy prevalence thresholds for Schistosoma mansoni from the Kato-Katz technique into the point-of-care circulating cathodic antigen diagnostic test. PLoS Negl Trop Dis 12: e0006941.
    [Google Scholar]
  27. Knopp S et al., 2012. Study and implementation of urogenital schistosomiasis elimination in Zanzibar (Unguja and Pemba islands) using an integrated multidisciplinary approach. BMC Public Health 12: 930.
    [Google Scholar]
  28. WHO, 2013. Sixty-sixth World Health Assembly resolution, WHA66.12, neglected tropical diseases. Available at: http://apps.who.int/gb/ebwha/pdf_files/WHA66-REC1/WHA66_2013_REC1_complete.pdf. Accessed October 15, 2019.
  29. Colley DG et al., 2013. A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. Am J Trop Med Hyg 88: 426432.
    [Google Scholar]
  30. King CH, Bertsch D, 2013. Meta-analysis of urine heme dipstick diagnosis of Schistosoma haematobium infection, including low-prevalence and previously-treated populations. PLoS Negl Trop Dis 7: e2431.
    [Google Scholar]
  31. Webster JP, Neves MI, Webster BL, Pennance T, Rabone M, Gouvras AV, Allan F, Walker M, Rollinson D, 2020. Parasite population genetic contributions to the Schistosomiasis Consortium for Operational Research and Evaluation within Sub-Saharan Africa. Am J Trop Med Hyg 103 (Suppl 1): 8091.
    [Google Scholar]
  32. Platt RN et al., 2019. Ancient hybridization and adaptive introgression of an invadolysin gene in schistosome parasites. Mol Biol Evol 36: 21272142.
    [Google Scholar]
  33. Tian-Bi YT et al., 2019. Molecular characterization and distribution of Schistosoma cercariae collected from naturally infected bulinid snails in northern and central Côte d’Ivoire. Parasit Vectors 12: 117.
    [Google Scholar]
  34. Emery AM, Allan FE, Rabone ME, Rollinson D, 2012. Schistosomiasis collection at NHM (SCAN). Parasit Vectors 5: 185.
    [Google Scholar]
  35. Colley DG et al., 2020. Evaluation, validation, and recognition of the point-of-care circulating cathodic antigen, urine-based assay for mapping Schistosoma mansoni infections. Am J Trop Med Hyg 103 (Suppl 1): 4249.
    [Google Scholar]
  36. Haggag AA, Rabiee A, Abd Elaziz KM, Campbell CH, Colley DG, Ramzy RMR, 2019. Thirty-day daily comparisons of Kato-Katz and CCA assays of 45 Egyptian children in areas with very low prevalence of Schistosoma mansoni. Am J Trop Med Hyg 100: 578583.
    [Google Scholar]
  37. Haggag AA, Casacuberta Partal M, Rabiee A, Abd Elaziz KM, Campbell CH, Colley DG, Ramzy RMR, 2019. Multiple praziquantel treatments of Schistosoma mansoni egg-negative, CCA-positive schoolchildren in a very low endemic setting in Egypt do not consistently alter CCA results. Am J Trop Med Hyg 100: 10571511.
    [Google Scholar]
  38. Corstjens PLAM et al., 2020. Circulating Anodic Antigen (CAA): a highly sensitive diagnostic biomarker to detect active Schistosoma infections—improvement and use during SCORE. Am J Trop Med Hyg 103 (Suppl 1): 5057.
    [Google Scholar]
  39. Allan F et al., 2020. Snail-related contributions from the Schistosomiasis Consortium for Operational Research and Evaluation program including xenomonitoring, focal mollusciciding, biological control, and modeling. Am J Trop Med Hyg 103 (Suppl 1): 6679.
    [Google Scholar]
  40. Sokolow SH, Wood CL, Jones IJ, Lafferty KD, Kuris AM, Hsieh MH, De Leo GA, 2018. To reduce the global burden of human schistosomiasis, use ‘old fashioned’ snail control. Trends Parasitol 34: 2340.
    [Google Scholar]
  41. Knopp S et al., 2019. A 5-year intervention study on elimination of urogenital schistosomiasis in Zanzibar: parasitological results of annual cross-sectional surveys. PLoS Negl Trop Dis 13: e0007268.
    [Google Scholar]
  42. Knopp S et al., 2019. Evaluation of integrated interventions layered on mass drug administration for urogenital schistosomiasis elimination: a cluster-randomised trial. Lancet Glob Health 7: e1118e1129.
    [Google Scholar]
  43. Tian-Bi YT et al., 2018. Interrupting seasonal transmission of Schistosoma haematobium and control of soil-transmitted helminthiasis in northern and central Côte d’Ivoire: a SCORE study protocol. BMC Public Health 18: 186.
    [Google Scholar]
  44. WHO, 2017. Field Use of Molluscicides in Schistosomiasis Control Programmes: an Operational Manual for Programme Managers. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  45. Sokolow SH et al., 2015. Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proc Natl Acad Sci USA 112: 96509655.
    [Google Scholar]
  46. Diakité NR, N’Zi KG, Ouattara M, Coulibaly JT, Saric J, Yao PK, Hattendorf J, Utzinger J, N'Goran EK, 2018. Association of riverine prawns and intermediate host snails and correlation with human schistosomiasis in two river systems in south-eastern Côte d’Ivoire. Parasitology 145: 17921800.
    [Google Scholar]
  47. King CH, Yoon N, Wang X, Lo NC, Alsallaq R, Ndeffo-Mbah M, Li E, Gurarie D, 2020. Application of Schistosomiasis Consortium for Operational Research and Evaluation study findings to refine predictive modeling of Schistosoma mansoni and Schistosoma haematobium control in Sub-Saharan Africa. Am J Trop Med Hyg 103 (Suppl 1): 97104.
    [Google Scholar]
  48. Alsallaq RA, Gurarie D, Ndeffo Mbah M, Galvani A, King CH, 2017. Quantitative assessment of the impact of partially protective anti-schistosomiasis vaccines. PLoS Negl Trop Dis 11: e0005544.
    [Google Scholar]
  49. King CH, Bertsch D, Andrade GM, Burnim M, Ezeamama AE, Binder S, Colley DG, 2020. The Schistosomiasis Consortium for Operational Research and Evaluation Rapid Answers Project: systematic reviews and meta-analysis to provide policy recommendations based on available evidence. Am J Trop Med Hyg 103 (Suppl 1): 9296.
    [Google Scholar]
  50. Savioli L et al., 2017. Building a global schistosomiasis alliance: an opportunity to join forces to fight inequality and rural poverty. Infect Dis Poverty 6: 65.
    [Google Scholar]
  51. Sousa-Figueiredo JC et al., 2015. Mapping of schistosomiasis and soil-transmitted helminths in Namibia: the first large-scale protocol to formally include rapid diagnostic tests. PLoS Negl Trop Dis 9: e0003831.
    [Google Scholar]
  52. Clements MN et al., 2017. Interpreting ambiguous ‘trace’ results in Schistosoma mansoni CCA tests: estimating sensitivity and specificity of ambiguous results with no gold standard. PLoS Negl Trop Dis 11: e0006102.
    [Google Scholar]
  53. Montresor A, Crompton DWT, Hall A, Bundy DAP, Savioli L, 1998. Guidelines for the Evaluation of Soil-Transmitted Helminthiasis and Schistosomiasis at Community Level–A Guide for Managers of Control Programmes. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  54. Adriko M, Standley CJ, Tinkitina B, Tukahebwa EM, Fenwick A, Fleming FM, Sousa-Figueiredo JC, Stothard JR, Kabatereine NB, 2014. Evaluation of circulating cathodic antigen (CCA) urine-cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri district, Uganda. Acta Trop 136: 5057.
    [Google Scholar]
  55. Coulibaly JT et al., 2011. Accuracy of urine circulating cathodic antigen (CCA) test for Schistosoma mansoni diagnosis in different settings of Côte d’Ivoire. PLoS Negl Trop Dis 5: e1384.
    [Google Scholar]
  56. Erko B, Medhin G, Teklehaymanot T, Degarege A, Legesse M, 2013. Evaluation of urine-circulating cathodic antigen (urine-CCA) cassette test for the detection of Schistosoma mansoni infection in areas of moderate prevalence in Ethiopia. Trop Med Int Health 18: 10291035.
    [Google Scholar]
  57. Tchuem Tchuenté LA, Kuete Fouodo CJ, Kamwa Ngassam RI, Sumo L, Dongmo Noumedem C, Kenfack CM, Gipwe NF, Nana ED, Stothard JR, Rollinson D, 2012. Evaluation of circulating cathodic antigen (CCA) urine-tests for diagnosis of Schistosoma mansoni infection in Cameroon. PLoS Negl Trop Dis 6: e1758.
    [Google Scholar]
  58. Tchuem Tchuenté LA, Stothard JR, Rollinson D, Reinhard-Rupp J, 2018. Precision mapping: an innovative tool and way forward to shrink the map, better target interventions, and accelerate toward the elimination of schistosomiasis. PLoS Negl Trop Dis 12: e0006563.
    [Google Scholar]
  59. Knowles SCL et al., 2017. Optimising cluster survey design for planning schistosomiasis preventive chemotherapy. PLoS Negl Trop Dis 11: e0005599.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0787
Loading
/content/journals/10.4269/ajtmh.19-0787
Loading

Data & Media loading...

  • Received : 23 Oct 2019
  • Accepted : 25 Jan 2020
  • Published online : 12 May 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error