1921
Volume 103, Issue 1_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) was established in late 2008 to conduct operational research that would inform practices related to the control and elimination of schistosomiasis. This article traces SCORE’s beginnings and underpinnings. These include an emphasis on openness and contributing to the development of a cohesive schistosomiasis control community, building linkages between researchers and national programs, and focusing on answering questions that will help Neglected Tropical Disease program managers to better control and eliminate schistosomiasis. It describes the development and implementation of SCORE’s multiple projects. SCORE began by drawing on advice from a broad range of experts by holding wide-ranging meetings that informed the priorities and protocols for SCORE research. SCORE’s major efforts included large, multicountry field studies comparing multiple strategies for mass drug administration with praziquantel, assessment of approaches to elimination, evaluation of a point-of-care assay for field mapping , and increasing the sensitivity of a laboratory-based diagnostic. SCORE also supported studies on morbidity due to schistosomiasis, quantification of vector snails and the detection of schistosome infections in snails, and changes in schistosome population genetics under praziquantel drug pressure. SCORE data and specimens are archived and will remain available for future research. Although much remains to be carried out, our hope is that through the already published articles and SCORE results described in this supplement, we will have provided a body of evidence to assist policy makers in the development of judicious guidelines for the control and elimination of schistosomiasis.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0785
2020-05-12
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/1_Suppl/tpmd190785.html?itemId=/content/journals/10.4269/ajtmh.19-0785&mimeType=html&fmt=ahah

References

  1. Colley DG et al., 2020. Contributions of the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) to Schistosomiasis control and elimination: key findings and messages for future goals, thresholds, and operational research. Am J Trop Med Hyg 103 (Suppl 1): 125134.
    [Google Scholar]
  2. Colley DG, Secor WE, 2007. A schistosomiasis research agenda. PLoS Negl Trop Dis 1: e32.
    [Google Scholar]
  3. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J, 2006. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6: 411425.
    [Google Scholar]
  4. Sokolow SH et al., 2017. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Philos Trans R Soc Lond B Biol Sci 372: 20160127.
    [Google Scholar]
  5. Tanaka H, Tsuji M, 1997. From discovery to eradication of schistosomiasis in Japan: 1847–1996. Int J Parasitol 27: 14651480.
    [Google Scholar]
  6. World Health Organization, 2001. Fifty-fourth world health assembly Rresolution, WHA54.19, schistosomiasis and soil-transmitted helminth infections. Available at: http://apps.who.int/gb/archive/pdf_files/WHA54/ea54r19.pdf. Accessed September 15, 2019.
  7. Fenwick A et al., 2009. The schistosomiasis control initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136: 17191730.
    [Google Scholar]
  8. Hotez PJ, 2009. Mass drug administration and integrated control for the world’s high-prevalence neglected tropical diseases. Clin Pharmacol Ther 85: 659664.
    [Google Scholar]
  9. Utzinger J, Raso G, Brooker S, De Savigny D, Tanner M, Ornbjerg N, Singer BH, N’Goran EK, 2009. Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution. Parasitology 136: 18591874.
    [Google Scholar]
  10. Arap Siongok TK, Mahmoud AA, Ouma JH, Warren KS, Muller AS, Handa AK, Houser HB, 1976. Morbidity in Schistosomiasis mansoni in relation to intensity of infection: study of a community in Machakos, Kenya. Am J Trop Med Hyg 25: 273284.
    [Google Scholar]
  11. Warren KS, Mahmoud AA, Muruka JF, Whittaker LR, Ouma JH, Arap Siongok TK, 1979. Schistosomiasis haematobia in coast province Kenya. Relationship between egg output and morbidity. Am J Trop Med Hyg 28: 864870.
    [Google Scholar]
  12. Grepin KA, Reich MR, 2008. Conceptualizing integration: a framework for analysis applied to neglected tropical disease control partnerships. PLoS Negl Trop Dis 2: e174.
    [Google Scholar]
  13. King CH, Kittur N, Wiegand RE, Shen Y, Ge Y, Whalen CC, Campbell CH, Jr., Hattendorf J, Binder S, 2020. Challenges in Protocol Development and Interpretation of the Schistosomiasis Consortium for Operational Research and Evaluation Intervention Studies. Am J Trop Med Hyg 103 (Suppl 1): 3641.
    [Google Scholar]
  14. Ezeamama AE et al., 2016. Gaining and sustaining schistosomiasis control: study protocol and baseline data prior to different treatment strategies in five African countries. BMC Infect Dis 16: 229.
    [Google Scholar]
  15. Binder S et al., 2020. Lessons learned in conducting mass drug administration for Schistosomiasis control and measuring coverage in an operational research setting. Am J Trop Med Hyg 103 (Suppl 1): 105113.
    [Google Scholar]
  16. King CH et al., 2020. Impact of different mass drug administration strategies for gaining and sustaining control of Schistosoma mansoni and Schistosoma haematobium infection in Africa. Am J Trop Med Hyg 103 (Suppl 1): 1423.
    [Google Scholar]
  17. Kittur N et al., 2020. Discovering, defining, and summarizing persistent hotspots in SOCRE studies. Am J Trop Med Hyg 103 (Suppl 1): 2429.
    [Google Scholar]
  18. King CH et al., 2020. SCORE studies on the impact of drug treatment on morbidity due to Schistosoma mansoni and Schistosoma haematobium infection. Am J Trop Med Hyg 103 (Suppl 1): 3035.
    [Google Scholar]
  19. King CH, Bertsch D, Andrade GM, Burnim M, Ezeamama AE, Binder S, Colley DG, 2020. The Schistosomiasis Consortium for Operational Research and Evaluation Rapid Answers Project: systematic reviews and meta-analysis to provide policy recommendations based on available evidence. Am J Trop Med Hyg 103 (Suppl 1): 9296.
    [Google Scholar]
  20. King CH, 2009. Toward the elimination of schistosomiasis. N Engl J Med 360: 106109.
    [Google Scholar]
  21. Jordan P, 1985. Schistosomiasis: The St. Lucia Project. Cambridge, United Kingdom: Cambridge University Press.
    [Google Scholar]
  22. Knopp S et al., 2012. Study and implementation of urogenital schistosomiasis elimination in Zanzibar (Unguja and Pemba islands) using an integrated multidisciplinary approach. BMC Public Health 12: 930.
    [Google Scholar]
  23. Knopp S et al., 2019. Evaluation of integrated interventions layered on mass drug administration for urogenital schistosomiasis elimination: a cluster-randomised trial. Lancet Glob Health 7: e1118e1129.
    [Google Scholar]
  24. World Health Organization, 2012. Sixty-fifth world health assembly resolution, WHA65.21, elimination of schistosomiasis. Available at: https://www.who.int/neglected_diseases/mediacentre/WHA_65.21_Eng.pdf.
  25. Clements MN et al., 2018. Latent class analysis to evaluate performance of point-of-care CCA for low-intensity Schistosoma mansoni infections in Burundi. Parasit Vectors 11: 111.
    [Google Scholar]
  26. Ortu G et al., 2017. Countrywide reassessment of Schistosoma mansoni infection in Burundi using a urine-circulating cathodic antigen rapid test: informing the national control program. Am J Trop Med Hyg 96: 664673.
    [Google Scholar]
  27. Campbell CH et al., 2020. SCORE Operational Research on Moving toward Interruption of Schistosomiasis Transmission. Am J Trop Med Hyg 103 (Suppl 1): 5865.
    [Google Scholar]
  28. Tian-Bi YT et al., 2018. Interrupting seasonal transmission of Schistosoma haematobium and control of soil-transmitted helminthiasis in northern and central Cote d’Ivoire: a SCORE study protocol. BMC Public Health 18: 186.
    [Google Scholar]
  29. Allan F et al., 2020. Snail-Related Contributions from the Schistosomiasis Consortium for Operational Research and Evaluation Program Including Xenomonitoring, Focal Mollusciciding, Biological Control, and Modeling. Am J Trop Med Hyg 103 (Suppl 1): 6679.
    [Google Scholar]
  30. Deelder AM, van Dam GJ, Kornelis D, Fillie YE, van Zeyl RJ, 1996. Schistosoma: analysis of monoclonal antibodies reactive with the circulating antigens CAA and CCA. Parasitology 112: 2135.
    [Google Scholar]
  31. Colley DG et al., 2020. Evaluation, Validation, and Recognition of the Point-of-Care Circulating Cathodic Antigen, Urine-Based Assay for Mapping Schistosoma mansoni Infections. Am J Trop Med Hyg 103 (Suppl 1): 4249.
    [Google Scholar]
  32. Ayele B, Erko B, Legesse M, Hailu A, Medhin G, 2008. Evaluation of circulating cathodic antigen (CCA) strip for diagnosis of urinary schistosomiasis in Hassoba school children, Afar, Ethiopia. Parasite 15: 6975.
    [Google Scholar]
  33. van Dam GJ, de Dood CJ, Lewis M, Deelder AM, van Lieshout L, Tanke HJ, van Rooyen LH, Corstjens PL, 2013. A robust dry reagent lateral flow assay for diagnosis of active schistosomiasis by detection of Schistosoma circulating anodic antigen. Exp Parasitol 135: 274282.
    [Google Scholar]
  34. Corstjens PLAM et al., 2020. Circulating Anodic Antigen (CAA): A Highly Sensitive Diagnostic Biomarker to Detect Active Schistosoma Infections—Improvement and Use during SCORE. Am J Trop Med Hyg 103 (Suppl 1): 5057.
    [Google Scholar]
  35. Gouvras AN, Allan F, Kinung’hi S, Rabone M, Emery A, Angelo T, Pennance T, Webster B, Nagai H, Rollinson D, 2017. Longitudinal survey on the distribution of Biomphalaria sudanica and B. choanomophala in Mwanza region, on the shores of Lake Victoria, Tanzania: implications for schistosomiasis transmission and control. Parasit Vectors 10: 316.
    [Google Scholar]
  36. Glenn TC, Lance SL, McKee AM, Webster BL, Emery AM, Zerlotini A, Oliveira G, Rollinson D, Faircloth BC, 2013. Significant variance in genetic diversity among populations of Schistosoma haematobium detected using microsatellite DNA loci from a genome-wide database. Parasit Vectors 6: 300.
    [Google Scholar]
  37. Webster JP et al., 2020. Parasite Population Genetic Contributions to the Schistosomiasis Consortium for Operational Research and Evaluation within Sub-Saharan Africa. Am J Trop Med Hyg 103 (Suppl 1): 8091.
    [Google Scholar]
  38. Emery AM, Allan FE, Rabone ME, Rollinson D, 2012. Schistosomiasis collection at NHM (SCAN). Parasit Vectors 5: 185.
    [Google Scholar]
  39. Binder S, Campbell CH, Andros T, Castleman JD, Kittur N, King CH, Colley DG, 2020. The Schistosomiasis Consortium for Operational Research and Evaluation 2008–2020: Approaches, Experiences, Lessons, and Recommendations. Am J Trop Med Hyg 103 (Suppl 1): 114124.
    [Google Scholar]
  40. Worrell CM, Bartoces M, Karanja DM, Ochola EA, Matete DO, Mwinzi PN, Montgomery SP, Secor WE, 2015. Cost analysis of tests for the detection of Schistosoma mansoni infection in children in western Kenya. Am J Trop Med Hyg 92: 12331239.
    [Google Scholar]
  41. Colley DG et al., 2013. A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. Am J Trop Med Hyg 88: 426432.
    [Google Scholar]
  42. Kittur N, Castleman JD, Campbell CH, King CH, Colley DG, 2016. Comparison of Schistosoma mansoni prevalence and intensity of infection, as determined by the circulating cathodic antigen urine assay or by the Kato-Katz fecal assay: a systematic review. Am J Trop Med Hyg 94: 605610.
    [Google Scholar]
  43. Mwinzi PN, Kittur N, Ochola E, Cooper PJ, Campbell CH Jr., King CH, Colley DG, 2015. Additional evaluation of the point-of-contact circulating cathodic antigen assay for Schistosoma mansoni infection. Front Public Health 3: 48.
    [Google Scholar]
  44. Barenbold O et al., 2018. Translating preventive chemotherapy prevalence thresholds for Schistosoma mansoni from the Kato-Katz technique into the point-of-care circulating cathodic antigen diagnostic test. PLoS Negl Trop Dis 12: e0006941.
    [Google Scholar]
  45. Haggag AA, Casacuberta Partal M, Rabiee A, Abd Elaziz KM, Campbell CH, Colley DG, Ramzy RMR, 2019. Multiple praziquantel treatments of Schistosoma mansoni egg-negative, CCA-positive schoolchildren in a very low endemic setting in Egypt do not consistently alter CCA results. Am J Trop Med Hyg 100: 15071511.
    [Google Scholar]
  46. Haggag AA, Rabiee A, Abd Elaziz KM, Campbell CH, Colley DG, Ramzy RMR, 2019. Thirty-day daily comparisons of Kato-Katz and CCA assays of 45 Egyptian children in areas with very low prevalence of Schistosoma mansoni. Am J Trop Med Hyg 100: 578583.
    [Google Scholar]
  47. Kittur N, Binder S, Campbell CH, King CH, Kinung’hi S, Olsen A, Magnussen P, Colley DG, 2017. Defining persistent hotspots: areas that fail to decrease meaningfully in prevalence after multiple years of mass drug administration with praziquantel for control of schistosomiasis. Am J Trop Med Hyg 97: 18101817.
    [Google Scholar]
  48. Kittur N et al., 2019. Persistent hot spots in Schistosomiasis Consortium for Operational Research and Evaluation studies for gaining and sustaining control of schistosomiasis after four years of mass drug administration of praziquantel. Am J Trop Med Hyg 101: 617627.
    [Google Scholar]
  49. Pennance T, Person B, Muhsin MA, Khamis AN, Muhsin J, Khamis IS, Mohammed KA, Kabole F, Rollinson D, Knopp S, 2016. Urogenital schistosomiasis transmission on Unguja island, Zanzibar: characterisation of persistent hot-spots. Parasit Vectors 9: 646.
    [Google Scholar]
  50. King CH, Bertsch D, 2015. Historical perspective: snail control to prevent schistosomiasis. PLoS Negl Trop Dis 9: e0003657.
    [Google Scholar]
  51. King CH, Sutherland LJ, Bertsch D, 2015. Systematic review and meta-analysis of the impact of chemical-based mollusciciding for control of Schistosoma mansoni and S. haematobium transmission. PLoS Negl Trop Dis 9: e0004290.
    [Google Scholar]
  52. King CH, 2020. SCORE Studies on the Impact of Drug Treatment on Morbidity due to Schistosoma mansoni and Schistosoma haematobium Infection. Am J Trop Med Hyg 103 (Suppl 1): 3035.
    [Google Scholar]
  53. WHO, 2017. Field Use of Molluscicides in Schistosomiasis Control Programmes: an Operational Manual for Programme Managers. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  54. Bergquist R, Utzinger J, McManus DP, 2008. Trick or treat: the role of vaccines in integrated schistosomiasis control. PLoS Negl Trop Dis 2: e244.
    [Google Scholar]
  55. Sayed AA, Simeonov A, Thomas CJ, Inglese J, Austin CP, Williams DL, 2008. Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nat Med 14: 407412.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0785
Loading
/content/journals/10.4269/ajtmh.19-0785
Loading

Data & Media loading...

  • Received : 23 Oct 2019
  • Accepted : 26 Jan 2020
  • Published online : 12 May 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error