1921
Volume 102, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Given that the C580Y polymorphism in the propeller domain of the gene () was documented in Guyana, monitoring for mutations associated with antimalarial resistance was undertaken in neighboring Roraima state in Brazil. Polymorphisms in the and genes were investigated in 275 samples. No mutations were observed. Triple mutants 184F, 1042D, and 1246Y were observed in 100% of the samples successfully sequenced for the gene, with 20.1% of these having an additional mutation at codon 1034C. Among them, 2.5% of samples harbored two copies of the gene. We found no evidence of the spread of C580Y parasites to Roraima state, Brazil. As previously observed, the 184F, 1042D, and 1246Y mutations in the gene appear to be fixed in this region. Continued molecular surveillance is essential to detect any potential migration or local emergence of artemisinin-resistant mutation.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0749
2019-12-12
2021-01-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/102/2/tpmd190749.html?itemId=/content/journals/10.4269/ajtmh.19-0749&mimeType=html&fmt=ahah

References

  1. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM; Artemisinin Resistance in Cambodia 1 Study C, 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 26192620.
    [Google Scholar]
  2. Dondorp AM et al., 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455467.
    [Google Scholar]
  3. Huang F, Tang L, Yang H, Zhou S, Liu H, Li J, Guo S, 2012. Molecular epidemiology of drug resistance markers of Plasmodium falciparum in Yunnan province, China. Malar J 11: 243.
    [Google Scholar]
  4. Kyaw MP et al., 2013. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS One 8: e57689.
    [Google Scholar]
  5. Phyo AP et al., 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 19601966.
    [Google Scholar]
  6. Ariey F et al., 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 5055.
    [Google Scholar]
  7. World Health Organization, 2018. Artemisinin Resistance and Artemisinin-Based Combination Therapy Efficacy. Geneva, Switzerland: WHO.
    [Google Scholar]
  8. Conrad MD, Rosenthal PJ, 2019. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis 19: e338e351.
    [Google Scholar]
  9. Chenet SM et al., 2016. Independent emergence of the Plasmodium falciparum kelch propeller domain mutant allele C580Y in Guyana. J Infect Dis 213: 14721475.
    [Google Scholar]
  10. Vreden SG, Bansie RD, Jitan JK, Adhin MR, 2016. Assessing parasite clearance during uncomplicated Plasmodium falciparum infection treated with artesunate monotherapy in Suriname. Infect Drug Resist 9: 261267.
    [Google Scholar]
  11. Lucchi NW et al., 2014. PET-PCR method for the molecular detection of malaria parasites in a national malaria surveillance study in Haiti, 2011. Malar J 13: 462.
    [Google Scholar]
  12. Griffing S, Syphard L, Sridaran S, McCollum AM, Mixson-Hayden T, Vinayak S, Villegas L, Barnwell JW, Escalante AA, Udhayakumar V, 2010. pfmdr1 amplification and fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum in Venezuela. Antimicrob Agents Chemother 54: 15721579.
    [Google Scholar]
  13. Vinayak S et al., 2010. Multiple genetic backgrounds of the amplified Plasmodium falciparum multidrug resistance (pfmdr1) gene and selective sweep of 184F mutation in Cambodia. J Infect Dis 201: 15511560.
    [Google Scholar]
  14. Inoue J, Jovel I, Morris U, Aydin-Schmidt B, Islam A, Segurado AC, Bjorkman A, Di Santi S, Martensson A, 2018. Absence of Plasmodium falciparum K13 propeller domain polymorphisms among field isolates collected from the Brazilian Amazon basin between 1984 and 2011. Am J Trop Med Hyg 99: 15041507.
    [Google Scholar]
  15. Menard D et al., 2016. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374: 24532464.
    [Google Scholar]
  16. Itoh M et al., 2018. Efficacy of artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria in Cruzeiro do Sul, Brazil, 2016. Am J Trop Med Hyg 98: 8894.
    [Google Scholar]
  17. Ladeia-Andrade S, de Melo GN, de Souza-Lima Rde C, Salla LC, Bastos MS, Rodrigues PT, Luz F, Ferreira MU, 2016. No Clinical or molecular evidence of Plasmodium falciparum resistance to artesunate-mefloquine in northwestern Brazil. Am J Trop Med Hyg 95: 148154.
    [Google Scholar]
  18. Sisowath C, Ferreira PE, Bustamante LY, Dahlstrom S, Martensson A, Bjorkman A, Krishna S, Gil JP, 2007. The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa. Trop Med Int Health 12: 736742.
    [Google Scholar]
  19. Costa GL, Amaral LC, Fontes CJF, Carvalho LH, de Brito CFA, de Sousa TN, 2017. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar J 16: 152.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0749
Loading
/content/journals/10.4269/ajtmh.19-0749
Loading

Data & Media loading...

  • Received : 09 Oct 2019
  • Accepted : 04 Nov 2019
  • Published online : 12 Dec 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error