1921
Volume 102, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Schistosomiasis control programs rely heavily on mass drug administration (MDA) campaigns with praziquantel for preventative chemotherapy. Areas where the prevalence and/or intensity of schistosomiasis infection remains high even after several rounds of treatment, termed “persistent hotspots” (PHSs), have been identified in trials of MDA effectiveness conducted by the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) in Kenya, Mozambique, Tanzania, and Côte d’Ivoire. In this analysis, we apply a previously developed set of criteria to classify the PHS status of 531 study villages from five SCORE trials. We then fit logistic regression models to data from SCORE and publically available georeferenced datasets to evaluate the influence of local environmental and population features, pre-intervention infection burden, and treatment scheduling on PHS status in each trial. The frequency of PHS in individual trials ranged from 35.3% to 71.6% in study villages. Significant relationships between PHS status and MDA frequency, distance to freshwater, rainfall, baseline schistosomiasis burden, elevation, land cover type, and village remoteness were each observed in at least one trial, although the strength and direction of these relationships was not always consistent among study sites. These findings suggest that PHSs are driven in part by environmental conditions that modify the risk and frequency of reinfection.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0658
2019-12-30
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/14761645/102/2/tpmd190658.html?itemId=/content/journals/10.4269/ajtmh.19-0658&mimeType=html&fmt=ahah

References

  1. Colley DG, Bustinduy AL, Secor WE, King CH, 2014. Human schistosomiasis. Lancet 383: 22532264.
    [Google Scholar]
  2. Bustinduy AL, Parraga IM, Thomas CL, Mungai PL, Mutuku F, Muchiri EM, Kitron U, King CH, 2013. Impact of polyparasitic infections on anemia and undernutrition among Kenyan children living in a Schistosoma haematobium -endemic area. Am J Trop Med Hyg 88: 433440.
    [Google Scholar]
  3. King CH, Dangerfield-Cha M, 2008. The unacknowledged impact of chronic schistosomiasis. Chronic Illn 4: 6579.
    [Google Scholar]
  4. Ezeamama AE, Bustinduy AL, Nkwata AK, Martinez L, Pabalan N, Boivin MJ, King CH, 2018. Cognitive deficits and educational loss in children with schistosome infection — a systematic review and meta-analysis. PLoS Negl Trop Dis 12: 123.
    [Google Scholar]
  5. Friedman JF, Kanzaria HK, Acosta LUZP, Langdon GC, 2005. Relationship between Schistosoma japonicum and nutritional status among children and young adults in Leyte, the Phillipines. Am J Trop Med Hyg 72: 527533.
    [Google Scholar]
  6. Campbell SJ, Savage GB, Gray DJ, Atkinson JM, Soares RJ, Nery SV, Mccarthy JS, Velleman Y, Wicken JH, 2014. Water, sanitation, and hygiene (WASH): a critical component for sustainable soil-transmitted helminth and schistosomiasis control. PLoS Negl Trop Dis 8: 15.
    [Google Scholar]
  7. Lo NC, Gurarie D, Yoon N, Coulibaly JT, Bendavid E, Andrews JR, King CH, 2018. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc Natl Acad Sci 115: E584E591.
    [Google Scholar]
  8. WHO, 2006. Preventive Chemotherapy in Human Helminthiasis. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  9. World Health Organization, 2018. Schistosomiasis and soil transmitted helminthiases: Numbers of people treated in 2017. Wkly Epidemiol Rec 2018: 681692.
    [Google Scholar]
  10. Wiegand RE et al., 2017. A persistent hotspot of Schistosoma mansoni infection in a five-year randomized trial of praziquantel preventative chemotherapy strategies. J Infect Dis 216: 14251433.
    [Google Scholar]
  11. Kittur N, Binder S, Campbell CH, King CH, Kinung S, Olsen A, Magnussen P, Colley DG, 2017. Defining persistent hotspots: areas that fail to decrease meaningfully in prevalence after multiple years of mass drug administration with praziquantel for control of schistosomiasis. Am J Trop Med Hyg 97: 18101817.
    [Google Scholar]
  12. Pennance T, Person B, Muhsin MA, Khamis AN, Muhsin J, Khamis IS, Mohammed KA, Kabole F, Rollinson D, Knopp S, 2016. Urogenital schistosomiasis transmission on Unguja Island, Zanzibar: characterisation of persistent hot-spots. Parasit Vectors 9: 113.
    [Google Scholar]
  13. Elmorshedy H, Bergquist R, El-ela NEA, Eassa SM, Elsakka EE, 2015. Can human schistosomiasis mansoni control be sustained in high-risk transmission foci in Egypt? Parasit Vectors 8: 18.
    [Google Scholar]
  14. Crellen T, Walker M, Lamberton PHL, Kabatereine NB, Tukahebwa EM, Cotton JA, Webster JP, 2016. Reduced efficacy of praziquantel against Schistosoma mansoni Is associated with multiple rounds of mass drug administration. Clin Infect Dis. 63: 11511159.
    [Google Scholar]
  15. McCreesh N, Booth M, 2013. Challenges in predicting the effects of climate change on Schistosoma mansoni and Schistosoma haematobium transmission potential. Trends Parasitol 29: 548555.
    [Google Scholar]
  16. Esrey SA, Potash JB, Roberts L, Shiff C, 1991. Effects of improved water supply and sanitation on ascariasis, diarrhoea, dracunculiasis, hookworm infection, schistosomiasis, and trachoma. Bull World Health Organ 69: 609621.
    [Google Scholar]
  17. Soares RJ, Barnett AG, Clements ACA, 2011. Geographical analysis of the role of water supply and sanitation in the risk of helminth infections of children in west Africa. Proc Natl Acad Sci U S A 108: 2008420089.
    [Google Scholar]
  18. Lai Y-S et al., 2015. Spatial distribution of schistosomiasis and treatment needs in sub-Saharan Africa: a systematic review and geostatistical analysis. Lancet Infect Dis 15: 927940.
    [Google Scholar]
  19. Clements ACA, Garba A, Sacko M, Touré S, Dembelé R, Landouré A, Bosque-Oliva E, Gabrielli AF, Fenwick A, 2008. Mapping the probability of schistosomiasis and associated uncertainty, west Africa. Emerg Infect Dis 14: 1629.
    [Google Scholar]
  20. Brooker S et al., 2016. The potential of rapid screening methods for Schistosoma mansoni in western Kenya. Ann Trop Med Parasitol 95: 343351.
    [Google Scholar]
  21. Brooker S, Hay SI, Issae W, Hall A, Kihamia CM, Lwambo NJS, Wint W, Rogers DJ, Bundy DAP, 2001. Predicting the distribution of urinary schistosomiasis in Tanzania using satellite sensor data. Trop Med Int Heal 6: 9981007.
    [Google Scholar]
  22. Kabatereine NB, Brooker S, Tukahebwa EM, Kazibwe F, Onapa AW, 2004. Epidemiology and geography of Schistosoma mansoni in Uganda: implications for planning control. Trop Med Int Heal 9: 372380.
    [Google Scholar]
  23. Ezeamama AE et al., 2016. Gaining and sustaining schistosomiasis control: study protocol and baseline data prior to different treatment strategies in five African countries. BMC Infect Dis 16: 111.
    [Google Scholar]
  24. Kittur N et al., 2019. Persistent hotspots in schistosomiasis consortium for operational Research and evaluation studies for gaining and sustaining control of schistosomiasis after four years of mass drug administration of praziquantel. Am J Trop Med Hyg 101: 617627.
    [Google Scholar]
  25. Katz N, Chaves A, Pellegrino J, 1972. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14: 397400.
    [Google Scholar]
  26. Peters PA, Mahmoud AAF, Warren KS, Ouma JH, Arap Siongok TK, 1976. Field studies of a rapid, accurate means of quantifying Schistosoma haematobium eggs in urine samples. Bull World Health Organ 54: 159162.
    [Google Scholar]
  27. Springs C, Systems WI, Springs C, 2012. African rainfall climatology version 2 for famine early warning systems. J Appl Meteorol Climatol 52: 588606.
    [Google Scholar]
  28. Kummu M, MoelH De, Ward PJ, Varis O, 2011. How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS One 6: e20578.
    [Google Scholar]
  29. Weiss DJ et al., 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553: 333336.
    [Google Scholar]
  30. Tatem AJ, 2017. WorldPop, open data for spatial demography. Sci Data 4: 25.
    [Google Scholar]
  31. Arino O, Ramos Perez JJ, Kalogirou V, Bontemps S, Defourny P, Van Bogaert E, 2012. Global land cover map for 2009 (GlobCover 2009). Eur Sp Agency (ESA), Univ Cathol Louvain (UCL), PANGEA.
    [Google Scholar]
  32. Farr TG et al., 2007. The shuttle radar topography mission. Rev Geophys 45: RG2004.
    [Google Scholar]
  33. WHO, 2013. Schistosomiasis: Progress Report 2001–2011, Strategic Plan 2012–2020. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  34. Gray DJ, Mcmanus DP, Li Y, Williams GM, Bergquist R, Ross AG, 2013. Schistosomiasis elimination: lessons from the past guide the future. Lancet Infect Dis 10: 733736.
    [Google Scholar]
  35. Woodhall DM, Wiegand RE, Wellman M, Matey E, Abudho B, Karanja DMS, Mwinzi PMN, Montgomery SP, Secor WE, 2013. Use of geospatial modeling to predict Schistosoma mansoni prevalence in Nyanza province, Kenya. PLoS One 8: e71635.
    [Google Scholar]
  36. Colley DG, Andove J, Slutsker L, Secor WE, 2003. Geographic distribution of schistosomiasis and soil-transmitted helminths in western Kenya: implications for antihelminthic mass treatment. Am J Trop Med Hyg 69: 318323.
    [Google Scholar]
  37. Gurarie D, Lo NC, Ndeffo-mbah ML, Durham DP, King CH, 2018. The human-snail transmission environment shapes long term schistosomiasis control outcomes: implications for improving the accuracy of predictive modeling. PLoS Negl Trop Dis 12: e0006514.
    [Google Scholar]
  38. Evan Secor W, 2014. Water-based interventions for schistosomiasis control. Pathog Glob Health 108: 246254.
    [Google Scholar]
  39. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J, 2006. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6: 411425.
    [Google Scholar]
  40. Chala B, Torben W, 2018. An epidemiological trend of urogenital schistosomiasis in Ethiopia. Front Public Health 6: 60.
    [Google Scholar]
  41. Choudhry AW, 1974. Seven years of snail control at MWEA irrigation settlement, Kenya: results and costs. East Afr Med J 51: 600609.
    [Google Scholar]
  42. Kazura JW, Neill M, Peters PA, Dennis E, 1985. Swamp rice farming: possible effects on endemicity of schistosomiasis mansoni and haematobia in a population in Liberia. Am J Trop Med Hyg 34: 107111.
    [Google Scholar]
  43. Stensgaard A et al., 2013. Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter? Acta Trop 128: 378390.
    [Google Scholar]
  44. Wu X, Zhang S, Xu X, Huang Y, Steinmann P, Utzinger J, Wang T, Xu J, Zheng J, Zhou X, 2008. Effect of floods on the transmission of schistosomiasis in the Yangtze River valley, People’s Republic of China. Parasitol Int 57: 271276.
    [Google Scholar]
  45. Kironde FK, Kabatereine NB, Kategere P, Kazibwe F, 2008. Effect of seasonal rainfall and other environmental changes on snail density and infection rates with Schistosoma mansoni fifteen years after the last snails’ study in Kigungu, Entebbe, Uganda. East Afr Med J 85: 556563.
    [Google Scholar]
  46. Xue Z, Gebremichael M, Ahmad R, Weldu ML, Bagtzoglou AC, 2011. Impact of temperature and precipitation on propagation of intestinal schistosomiasis in an irrigated region in Ethiopia: suitability of satellite datasets. Trop Med Int Health 16: 11041111.
    [Google Scholar]
  47. Rozendaal JA, 1997. Vector Control. Methods for Use by Individuals and Communities. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  48. Li E, Gurarie D, Lo NC, Zhu X, King CH, 2019. Improving public health control of schistosomiasis with a modified WHO strategy: a model-based comparison study. Lancet Glob Health 7: e1414e1422.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0658
Loading
/content/journals/10.4269/ajtmh.19-0658
Loading

Data & Media loading...

Supplemental tables and figures

  • Received : 05 Sep 2019
  • Accepted : 06 Nov 2019
  • Published online : 30 Dec 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error